A geometric interpretation of the Schutzenberger group of a minimal subshift

Detalhes bibliográficos
Autor(a) principal: Almeida, J
Data de Publicação: 2016
Outros Autores: Costa, A
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/107476
Resumo: The first author has associated in a natural way a profinite group to each irreducible subshift. The group in question was initially obtained as a maximal subgroup of a free profinite semigroup. In the case of minimal subshifts, the same group is shown in the present paper to also arise from geometric considerations involving the Rauzy graphs of the subshift. Indeed, the group is shown to be isomorphic to the inverse limit of the profinite completions of the fundamental groups of the Rauzy graphs of the subshift. A further result involving geometric arguments on Rauzy graphs is a criterion for freeness of the profinite group of a minimal subshift based on the Return Theorem of Berth, et al.
id RCAP_3ecbf922c76eece1ba33a668221a4014
oai_identifier_str oai:repositorio-aberto.up.pt:10216/107476
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A geometric interpretation of the Schutzenberger group of a minimal subshiftThe first author has associated in a natural way a profinite group to each irreducible subshift. The group in question was initially obtained as a maximal subgroup of a free profinite semigroup. In the case of minimal subshifts, the same group is shown in the present paper to also arise from geometric considerations involving the Rauzy graphs of the subshift. Indeed, the group is shown to be isomorphic to the inverse limit of the profinite completions of the fundamental groups of the Rauzy graphs of the subshift. A further result involving geometric arguments on Rauzy graphs is a criterion for freeness of the profinite group of a minimal subshift based on the Return Theorem of Berth, et al.20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/107476eng0004-208010.1007/s11512-016-0233-7Almeida, JCosta, Ainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:22:24Zoai:repositorio-aberto.up.pt:10216/107476Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:21:59.830685Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A geometric interpretation of the Schutzenberger group of a minimal subshift
title A geometric interpretation of the Schutzenberger group of a minimal subshift
spellingShingle A geometric interpretation of the Schutzenberger group of a minimal subshift
Almeida, J
title_short A geometric interpretation of the Schutzenberger group of a minimal subshift
title_full A geometric interpretation of the Schutzenberger group of a minimal subshift
title_fullStr A geometric interpretation of the Schutzenberger group of a minimal subshift
title_full_unstemmed A geometric interpretation of the Schutzenberger group of a minimal subshift
title_sort A geometric interpretation of the Schutzenberger group of a minimal subshift
author Almeida, J
author_facet Almeida, J
Costa, A
author_role author
author2 Costa, A
author2_role author
dc.contributor.author.fl_str_mv Almeida, J
Costa, A
description The first author has associated in a natural way a profinite group to each irreducible subshift. The group in question was initially obtained as a maximal subgroup of a free profinite semigroup. In the case of minimal subshifts, the same group is shown in the present paper to also arise from geometric considerations involving the Rauzy graphs of the subshift. Indeed, the group is shown to be isomorphic to the inverse limit of the profinite completions of the fundamental groups of the Rauzy graphs of the subshift. A further result involving geometric arguments on Rauzy graphs is a criterion for freeness of the profinite group of a minimal subshift based on the Return Theorem of Berth, et al.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/107476
url https://hdl.handle.net/10216/107476
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0004-2080
10.1007/s11512-016-0233-7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136136162967552