Generalized invertibility in two semigroups of a ring
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/2888 |
Resumo: | In {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well. |
id |
RCAP_3febd1c39e628de327ad9973432fc286 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/2888 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generalized invertibility in two semigroups of a ringGeneralized invertibilityCorner ringsMatrices over ringsSemigroupsScience & TechnologyIn {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well.Fundação para a Ciência e a Tecnologia (FCT) - Programa Operacional "Ciência, Tecnologia, Inovação" (POCTI).ElsevierUniversidade do MinhoPatrício, PedroPuystjens, Roland2004-01-152004-01-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/2888eng"Linear Algebra and its Applications". ISSN 0024-3795. 377 (2004) 125-139.0024-379510.1016/j.laa.2003.08.004http://www.elsevier.com/wps/find/journaldescription.cws_home/522483/description#descriptioninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:36Zoai:repositorium.sdum.uminho.pt:1822/2888Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:58:37.388279Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generalized invertibility in two semigroups of a ring |
title |
Generalized invertibility in two semigroups of a ring |
spellingShingle |
Generalized invertibility in two semigroups of a ring Patrício, Pedro Generalized invertibility Corner rings Matrices over rings Semigroups Science & Technology |
title_short |
Generalized invertibility in two semigroups of a ring |
title_full |
Generalized invertibility in two semigroups of a ring |
title_fullStr |
Generalized invertibility in two semigroups of a ring |
title_full_unstemmed |
Generalized invertibility in two semigroups of a ring |
title_sort |
Generalized invertibility in two semigroups of a ring |
author |
Patrício, Pedro |
author_facet |
Patrício, Pedro Puystjens, Roland |
author_role |
author |
author2 |
Puystjens, Roland |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Patrício, Pedro Puystjens, Roland |
dc.subject.por.fl_str_mv |
Generalized invertibility Corner rings Matrices over rings Semigroups Science & Technology |
topic |
Generalized invertibility Corner rings Matrices over rings Semigroups Science & Technology |
description |
In {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01-15 2004-01-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/2888 |
url |
http://hdl.handle.net/1822/2888 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Linear Algebra and its Applications". ISSN 0024-3795. 377 (2004) 125-139. 0024-3795 10.1016/j.laa.2003.08.004 http://www.elsevier.com/wps/find/journaldescription.cws_home/522483/description#description |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132376956141568 |