Generalized invertibility in two semigroups of a ring

Detalhes bibliográficos
Autor(a) principal: Patrício, Pedro
Data de Publicação: 2004
Outros Autores: Puystjens, Roland
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/2888
Resumo: In {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well.
id RCAP_3febd1c39e628de327ad9973432fc286
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/2888
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Generalized invertibility in two semigroups of a ringGeneralized invertibilityCorner ringsMatrices over ringsSemigroupsScience & TechnologyIn {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well.Fundação para a Ciência e a Tecnologia (FCT) - Programa Operacional "Ciência, Tecnologia, Inovação" (POCTI).ElsevierUniversidade do MinhoPatrício, PedroPuystjens, Roland2004-01-152004-01-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/2888eng"Linear Algebra and its Applications". ISSN 0024-3795. 377 (2004) 125-139.0024-379510.1016/j.laa.2003.08.004http://www.elsevier.com/wps/find/journaldescription.cws_home/522483/description#descriptioninfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:36Zoai:repositorium.sdum.uminho.pt:1822/2888Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:58:37.388279Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Generalized invertibility in two semigroups of a ring
title Generalized invertibility in two semigroups of a ring
spellingShingle Generalized invertibility in two semigroups of a ring
Patrício, Pedro
Generalized invertibility
Corner rings
Matrices over rings
Semigroups
Science & Technology
title_short Generalized invertibility in two semigroups of a ring
title_full Generalized invertibility in two semigroups of a ring
title_fullStr Generalized invertibility in two semigroups of a ring
title_full_unstemmed Generalized invertibility in two semigroups of a ring
title_sort Generalized invertibility in two semigroups of a ring
author Patrício, Pedro
author_facet Patrício, Pedro
Puystjens, Roland
author_role author
author2 Puystjens, Roland
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Patrício, Pedro
Puystjens, Roland
dc.subject.por.fl_str_mv Generalized invertibility
Corner rings
Matrices over rings
Semigroups
Science & Technology
topic Generalized invertibility
Corner rings
Matrices over rings
Semigroups
Science & Technology
description In {\em Linear and Multilinear Algebra}, 1997, Vol.43, pp.137-150, R. Puystjens and R. E. Hartwig proved that given a regular element $t$ of a ring $R$ with unity $1$, then $t$ has a group inverse if and only if $u=t^{2}t^{-}+1-tt^{-}$ is invertible in $R$ if and only if $v=t^{-}t^{2}+1-t^{-}t$ is invertible in $R$. There, R. E. Hartwig posed the pertinent question whether the inverse of $u$ and $v$ could be directly related. Similar equivalences appear in the characterization of Moore-Penrose and Drazin invertibility, and therefore analogous questions arise. We present a unifying result to answer these questions not only involving classical invertibility, but also some generalized inverses as well.
publishDate 2004
dc.date.none.fl_str_mv 2004-01-15
2004-01-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/2888
url http://hdl.handle.net/1822/2888
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Linear Algebra and its Applications". ISSN 0024-3795. 377 (2004) 125-139.
0024-3795
10.1016/j.laa.2003.08.004
http://www.elsevier.com/wps/find/journaldescription.cws_home/522483/description#description
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132376956141568