Time series regression modelling: replication, estimation and aggregation through maximum entropy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39490 |
Resumo: | In today's world of large volumes of data, where the usual statistical estimation methods are commonly inefficient or, more often, impossible to use, aggregation methodologies have emerged as a solution for statistical inference. This work proposes a novel procedure for time series regression modelling, in which maximum entropy and information theory play central roles in the replication of time series, estimation of parameters, and aggregation of estimates. The preliminary results reveal that this three-stage maximum entropy approach is a promising procedure for time series regression modelling in big data contexts. |
id |
RCAP_40377077105414a753b7cbbf0545e619 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39490 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time series regression modelling: replication, estimation and aggregation through maximum entropyBig dataBootstrapMaximum entropyNeaggingRegression modellingTime seriesIn today's world of large volumes of data, where the usual statistical estimation methods are commonly inefficient or, more often, impossible to use, aggregation methodologies have emerged as a solution for statistical inference. This work proposes a novel procedure for time series regression modelling, in which maximum entropy and information theory play central roles in the replication of time series, estimation of parameters, and aggregation of estimates. The preliminary results reveal that this three-stage maximum entropy approach is a promising procedure for time series regression modelling in big data contexts.MDPI2023-10-12T10:32:24Z2023-07-03T00:00:00Z2023-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39490eng10.3390/engproc2023039039Duarte, JorgeCosta, MariaMacedo, Pedroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:17:07Zoai:ria.ua.pt:10773/39490Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:39.232444Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
title |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
spellingShingle |
Time series regression modelling: replication, estimation and aggregation through maximum entropy Duarte, Jorge Big data Bootstrap Maximum entropy Neagging Regression modelling Time series |
title_short |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
title_full |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
title_fullStr |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
title_full_unstemmed |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
title_sort |
Time series regression modelling: replication, estimation and aggregation through maximum entropy |
author |
Duarte, Jorge |
author_facet |
Duarte, Jorge Costa, Maria Macedo, Pedro |
author_role |
author |
author2 |
Costa, Maria Macedo, Pedro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Duarte, Jorge Costa, Maria Macedo, Pedro |
dc.subject.por.fl_str_mv |
Big data Bootstrap Maximum entropy Neagging Regression modelling Time series |
topic |
Big data Bootstrap Maximum entropy Neagging Regression modelling Time series |
description |
In today's world of large volumes of data, where the usual statistical estimation methods are commonly inefficient or, more often, impossible to use, aggregation methodologies have emerged as a solution for statistical inference. This work proposes a novel procedure for time series regression modelling, in which maximum entropy and information theory play central roles in the replication of time series, estimation of parameters, and aggregation of estimates. The preliminary results reveal that this three-stage maximum entropy approach is a promising procedure for time series regression modelling in big data contexts. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-12T10:32:24Z 2023-07-03T00:00:00Z 2023-07-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39490 |
url |
http://hdl.handle.net/10773/39490 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/engproc2023039039 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137747131170816 |