Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python

Detalhes bibliográficos
Autor(a) principal: Santos, André David Marques Palma Matos dos
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/164325
Resumo: This dissertation builds upon the advances made in the BoostDFO research project, regarding the improvements made on some derivative-free optimization algorithms, written in MATLAB, including their parallelization. However, this project still left room for improvement, particularly in terms of parallelization and availability of the algorithms to the scientific community, which this dissertation tackles. Derivative-free optimization methods find their use in several academic and industrial fields, including but not limited to: machine learning, chemistry, renewable energy, power grid optimization and logistics. Given that many scientific and industrial fields are populated by an intensive use of the Python programming language it turns out to be interesting to rewrite some of the MATLAB algorithms in this language and, along the way, allow for the use of cluster architectures to support its parallelism, given that performance is critical in their applications. As such, this dissertation ports the derivative-free optimization algorithm SID-PSM into Python and evaluates the performance of some of its compatible parallelism approaches. As a result of this effort, this thesis contributes a more flexible and accessible implementation of SID-PSM to the broader scientific community and paves the way for the conversion of other algorithms from the BoostDFO project by providing useful insight about the conversion process.
id RCAP_41382ff7906049a658292c032a9079bd
oai_identifier_str oai:run.unl.pt:10362/164325
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in PythonDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThis dissertation builds upon the advances made in the BoostDFO research project, regarding the improvements made on some derivative-free optimization algorithms, written in MATLAB, including their parallelization. However, this project still left room for improvement, particularly in terms of parallelization and availability of the algorithms to the scientific community, which this dissertation tackles. Derivative-free optimization methods find their use in several academic and industrial fields, including but not limited to: machine learning, chemistry, renewable energy, power grid optimization and logistics. Given that many scientific and industrial fields are populated by an intensive use of the Python programming language it turns out to be interesting to rewrite some of the MATLAB algorithms in this language and, along the way, allow for the use of cluster architectures to support its parallelism, given that performance is critical in their applications. As such, this dissertation ports the derivative-free optimization algorithm SID-PSM into Python and evaluates the performance of some of its compatible parallelism approaches. As a result of this effort, this thesis contributes a more flexible and accessible implementation of SID-PSM to the broader scientific community and paves the way for the conversion of other algorithms from the BoostDFO project by providing useful insight about the conversion process.Esta dissertação baseia-se nos avanços feitos no projeto de pesquisa BoostDFO, sobre as melhorias feitas em alguns algoritmos de otimização sem derivadas, escritos em MATLAB, incluindo a sua paralelização.No entanto, este projeto deixou ainda espaço para melhorias, especialmente em termos de paralelização e de disponibilidade dos algoritmos à comunidade científica, de que esta dissertação trata. Os métodos de otimização sem derivadas sãoamplamente utilizadosemdiversas áreas académicas e industriais,incluindo de forma não exaustiva: aprendizagem automática, química, energia renovável, otimização da rede elétrica e logística. Dado que muitas áreas científicas e industriais fazem uso intensivo da linguagem de programação Python, torna-se interessante reescrever alguns dos algoritmos implementados emMATLAB nesta linguagem e, no caminho, permitir o uso de arquiteturas de cluster para suportar o seu paralellismo, dado que o desempenho é crítico nas suas aplicações. Como tal, esta dissertação porta o algoritmo de otimização sem derivadas SID-PSM para Python e avalia o desempenho de algumas das abordagens de paralelismo compatíveis com o mesmo. Comoresultado deste esforço, esta tese contribui com uma implementação mais flexível e acessível do SID-PSM para a comunidade científica em geral e abre caminho para a reescrita de outros algoritmos do projeto BoostDFO ao fornecer conhecimento útil acerca do processo de conversão.Duarte, VitorRUNSantos, André David Marques Palma Matos dos2024-03-01T13:44:28Z2023-122023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/164325enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:51:59Zoai:run.unl.pt:10362/164325Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T04:00:08.717469Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
title Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
spellingShingle Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
Santos, André David Marques Palma Matos dos
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
title_full Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
title_fullStr Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
title_full_unstemmed Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
title_sort Reimplementation of the SID-PSM Derivative-Free Optimization Algorithm in Python
author Santos, André David Marques Palma Matos dos
author_facet Santos, André David Marques Palma Matos dos
author_role author
dc.contributor.none.fl_str_mv Duarte, Vitor
RUN
dc.contributor.author.fl_str_mv Santos, André David Marques Palma Matos dos
dc.subject.por.fl_str_mv Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description This dissertation builds upon the advances made in the BoostDFO research project, regarding the improvements made on some derivative-free optimization algorithms, written in MATLAB, including their parallelization. However, this project still left room for improvement, particularly in terms of parallelization and availability of the algorithms to the scientific community, which this dissertation tackles. Derivative-free optimization methods find their use in several academic and industrial fields, including but not limited to: machine learning, chemistry, renewable energy, power grid optimization and logistics. Given that many scientific and industrial fields are populated by an intensive use of the Python programming language it turns out to be interesting to rewrite some of the MATLAB algorithms in this language and, along the way, allow for the use of cluster architectures to support its parallelism, given that performance is critical in their applications. As such, this dissertation ports the derivative-free optimization algorithm SID-PSM into Python and evaluates the performance of some of its compatible parallelism approaches. As a result of this effort, this thesis contributes a more flexible and accessible implementation of SID-PSM to the broader scientific community and paves the way for the conversion of other algorithms from the BoostDFO project by providing useful insight about the conversion process.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
2023-12-01T00:00:00Z
2024-03-01T13:44:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/164325
url http://hdl.handle.net/10362/164325
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138177216151552