Study of a Time Assisted SAR ADC

Detalhes bibliográficos
Autor(a) principal: Fitas, Ricardo Jorge Barros
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/30820
Resumo: The demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC.
id RCAP_427148bc60948117161b3f72dd3afe68
oai_identifier_str oai:run.unl.pt:10362/30820
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Study of a Time Assisted SAR ADCAnalog-to-Digital ConverterSuccessive Approximation RegisterTime-to- Digital ConverterLow powerTimeBypass WindowDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC.Paulino, NunoRUNFitas, Ricardo Jorge Barros2018-02-19T16:53:12Z2017-0420172017-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/30820enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:16:15Zoai:run.unl.pt:10362/30820Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:29:18.712113Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Study of a Time Assisted SAR ADC
title Study of a Time Assisted SAR ADC
spellingShingle Study of a Time Assisted SAR ADC
Fitas, Ricardo Jorge Barros
Analog-to-Digital Converter
Successive Approximation Register
Time-to- Digital Converter
Low power
Time
Bypass Window
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Study of a Time Assisted SAR ADC
title_full Study of a Time Assisted SAR ADC
title_fullStr Study of a Time Assisted SAR ADC
title_full_unstemmed Study of a Time Assisted SAR ADC
title_sort Study of a Time Assisted SAR ADC
author Fitas, Ricardo Jorge Barros
author_facet Fitas, Ricardo Jorge Barros
author_role author
dc.contributor.none.fl_str_mv Paulino, Nuno
RUN
dc.contributor.author.fl_str_mv Fitas, Ricardo Jorge Barros
dc.subject.por.fl_str_mv Analog-to-Digital Converter
Successive Approximation Register
Time-to- Digital Converter
Low power
Time
Bypass Window
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Analog-to-Digital Converter
Successive Approximation Register
Time-to- Digital Converter
Low power
Time
Bypass Window
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description The demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
2017
2017-04-01T00:00:00Z
2018-02-19T16:53:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/30820
url http://hdl.handle.net/10362/30820
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137918223122432