Study of a Time Assisted SAR ADC
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/30820 |
Resumo: | The demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC. |
id |
RCAP_427148bc60948117161b3f72dd3afe68 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/30820 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Study of a Time Assisted SAR ADCAnalog-to-Digital ConverterSuccessive Approximation RegisterTime-to- Digital ConverterLow powerTimeBypass WindowDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaThe demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC.Paulino, NunoRUNFitas, Ricardo Jorge Barros2018-02-19T16:53:12Z2017-0420172017-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/30820enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:16:15Zoai:run.unl.pt:10362/30820Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:29:18.712113Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Study of a Time Assisted SAR ADC |
title |
Study of a Time Assisted SAR ADC |
spellingShingle |
Study of a Time Assisted SAR ADC Fitas, Ricardo Jorge Barros Analog-to-Digital Converter Successive Approximation Register Time-to- Digital Converter Low power Time Bypass Window Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Study of a Time Assisted SAR ADC |
title_full |
Study of a Time Assisted SAR ADC |
title_fullStr |
Study of a Time Assisted SAR ADC |
title_full_unstemmed |
Study of a Time Assisted SAR ADC |
title_sort |
Study of a Time Assisted SAR ADC |
author |
Fitas, Ricardo Jorge Barros |
author_facet |
Fitas, Ricardo Jorge Barros |
author_role |
author |
dc.contributor.none.fl_str_mv |
Paulino, Nuno RUN |
dc.contributor.author.fl_str_mv |
Fitas, Ricardo Jorge Barros |
dc.subject.por.fl_str_mv |
Analog-to-Digital Converter Successive Approximation Register Time-to- Digital Converter Low power Time Bypass Window Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Analog-to-Digital Converter Successive Approximation Register Time-to- Digital Converter Low power Time Bypass Window Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
The demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparator’s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 2017 2017-04-01T00:00:00Z 2018-02-19T16:53:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/30820 |
url |
http://hdl.handle.net/10362/30820 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137918223122432 |