Data Normalization in Decision Making Processes

Detalhes bibliográficos
Autor(a) principal: Vafaei, Nazanin
Data de Publicação: 2021
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/131054
Resumo: With the fast-growing of data-rich systems, dealing with complex decision problems is unavoidable. Normalization is a crucial step in most multi criteria decision making (MCDM) models, to produce comparable and dimensionless data from heterogeneous data. Further, MCDM requires data to be numerical and comparable to be aggregated into a single score per alternative, thus providing their ranking. Several normalization techniques are available, but their performance depends on a number of characteristics of the problem at hand i.e., different normalization techniques may provide different rankings for alternatives. Therefore, it is a challenge to select a suitable normalization technique to represent an appropriate mapping from source data to a common scale. There are some attempts in the literature to address the subject of normalization in MCDM, but there is still a lack of assessment frameworks for evaluating normalization techniques. Hence, the main contribution and objective of this study is to develop an assessment framework for analysing the effects of normalization techniques on ranking of alternatives in MCDM methods and recommend the most appropriate technique for specific decision problems. The proposed assessment framework consists of four steps: (i) determining data types; (ii) chose potential candidate normalization techniques; (iii) analysis and evaluation of techniques; and (iv) selection of the best normalization technique. To validate the efficiency and robustness of the proposed framework, six normalization techniques (Max, Max-Min, Sum, Vector, Logarithmic, and Fuzzification) are selected from linear, semi-linear, and non-linear categories, and tested with four well known MCDM methods (TOPSIS, SAW, AHP, and ELECTRE), from scoring, comparative, and ranking methods. Designing the proposed assessment framework led to a conceptual model allowing an automatic decision-making process, besides recommending the most appropriate normalization technique for MCDM problems. Furthermore, the role of normalization techniques for dynamic multi criteria decision making (DMCDM) in collaborative networks is explored, specifically related to problems of selection of suppliers, business partners, resources, etc. To validate and test the utility and applicability of the assessment framework, a number of case studies are discussed and benchmarking and testimonies from experts are used. Also, an evaluation by the research community of the work developed is presented. The validation process demonstrated that the proposed assessment framework increases the accuracy of results in MCDM decision problems.
id RCAP_42e4cbc83f9b4d68182a80e47080d917
oai_identifier_str oai:run.unl.pt:10362/131054
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Data Normalization in Decision Making ProcessesMulti Criteria Decision MakingMCDMNormalizationDynamic MCDMData FusionAggregationDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaWith the fast-growing of data-rich systems, dealing with complex decision problems is unavoidable. Normalization is a crucial step in most multi criteria decision making (MCDM) models, to produce comparable and dimensionless data from heterogeneous data. Further, MCDM requires data to be numerical and comparable to be aggregated into a single score per alternative, thus providing their ranking. Several normalization techniques are available, but their performance depends on a number of characteristics of the problem at hand i.e., different normalization techniques may provide different rankings for alternatives. Therefore, it is a challenge to select a suitable normalization technique to represent an appropriate mapping from source data to a common scale. There are some attempts in the literature to address the subject of normalization in MCDM, but there is still a lack of assessment frameworks for evaluating normalization techniques. Hence, the main contribution and objective of this study is to develop an assessment framework for analysing the effects of normalization techniques on ranking of alternatives in MCDM methods and recommend the most appropriate technique for specific decision problems. The proposed assessment framework consists of four steps: (i) determining data types; (ii) chose potential candidate normalization techniques; (iii) analysis and evaluation of techniques; and (iv) selection of the best normalization technique. To validate the efficiency and robustness of the proposed framework, six normalization techniques (Max, Max-Min, Sum, Vector, Logarithmic, and Fuzzification) are selected from linear, semi-linear, and non-linear categories, and tested with four well known MCDM methods (TOPSIS, SAW, AHP, and ELECTRE), from scoring, comparative, and ranking methods. Designing the proposed assessment framework led to a conceptual model allowing an automatic decision-making process, besides recommending the most appropriate normalization technique for MCDM problems. Furthermore, the role of normalization techniques for dynamic multi criteria decision making (DMCDM) in collaborative networks is explored, specifically related to problems of selection of suppliers, business partners, resources, etc. To validate and test the utility and applicability of the assessment framework, a number of case studies are discussed and benchmarking and testimonies from experts are used. Also, an evaluation by the research community of the work developed is presented. The validation process demonstrated that the proposed assessment framework increases the accuracy of results in MCDM decision problems.Com o rápido crescimento dos sistemas ricos em dados, lidar com problemas de decisão complexos é inevitável. A normalização é uma etapa crucial na maioria dos modelos de tomada de decisão multicritério (MCDM), para produzir dados comparáveis e adimensionais a partir de dados heterogéneos, porque os dados precisam ser numéricos e comparáveis para serem agregados em uma única pontuação por alternativa. Como tal, várias técnicas de normalização estão disponíveis, mas o seu desempenho depende de uma série de características do problema em questão, ou seja, diferentes técnicas de normalização podem resultar em diferentes classificações para as alternativas. Portanto, é um desafio selecionar uma técnica de normalização adequada para representar o mapeamento dos dados de origem para uma escala comum. Existem algumas tentativas na literatura de abordar o assunto da normalização, mas ainda há uma falta de estrutura de avaliação para avaliar as técnicas de normalização sobre qual técnica é mais apropriada para os métodos MCDM.Assim, a principal contribuição e objetivo deste estudo são desenvolver uma ferramenta de avaliação para analisar os efeitos das técnicas de normalização na seriação de alternativas em métodos MCDM e recomendar a técnica mais adequada para problemas de decisão específicos. A estrutura de avaliação da ferramenta proposta consiste em quatro etapas: (i) determinar os tipos de dados, (ii) selecionar potenciais técnicas de normalização, (iii) análise e avaliação de técnicas em problemas de MCDM, e (iv) recomendação da melhor técnica para o problema de decisão. Para validar a eficácia e robustez da ferramenta proposta, seis técnicas de normalização (Max, Max-Min, Sum, Vector, Logarithmic e Fuzzification) foram selecionadas - das categorias lineares, semilineares e não lineares- e quatro conhecidos métodos de MCDM foram escolhidos (TOPSIS, SAW, AHP e ELECTRE). O desenho da ferramenta de avaliação proposta levou ao modelo conceptual que forneceu um processo automático de tomada de decisão, além de recomendar a técnica de normalização mais adequada para problemas de decisão. Além disso, é explorado o papel das técnicas de normalização para tomada de decisão multicritério dinâmica (DMCDM) em redes colaborativas, especificamente relacionadas com problemas de seleção de fornecedores, parceiros de negócios, recursos, etc. Para validar e testar a utilidade e aplicabilidade da ferramenta de avaliação, uma série de casos de estudo são discutidos e benchmarking e testemunhos de especialistas são usados. Além disso, uma avaliação do trabalho desenvolvido pela comunidade de investigação também é apresentada. Esta validação demonstrou que a ferramenta proposta aumenta a precisão dos resultados em problemas de decisão multicritério.Ribeiro, Maria RitaMatos, LuísRUNVafaei, Nazanin2022-01-18T11:31:18Z2021-12-062021-12-06T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/131054enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:58:14Zoai:run.unl.pt:10362/131054Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:58:14Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Data Normalization in Decision Making Processes
title Data Normalization in Decision Making Processes
spellingShingle Data Normalization in Decision Making Processes
Vafaei, Nazanin
Multi Criteria Decision Making
MCDM
Normalization
Dynamic MCDM
Data Fusion
Aggregation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Data Normalization in Decision Making Processes
title_full Data Normalization in Decision Making Processes
title_fullStr Data Normalization in Decision Making Processes
title_full_unstemmed Data Normalization in Decision Making Processes
title_sort Data Normalization in Decision Making Processes
author Vafaei, Nazanin
author_facet Vafaei, Nazanin
author_role author
dc.contributor.none.fl_str_mv Ribeiro, Maria Rita
Matos, Luís
RUN
dc.contributor.author.fl_str_mv Vafaei, Nazanin
dc.subject.por.fl_str_mv Multi Criteria Decision Making
MCDM
Normalization
Dynamic MCDM
Data Fusion
Aggregation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Multi Criteria Decision Making
MCDM
Normalization
Dynamic MCDM
Data Fusion
Aggregation
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description With the fast-growing of data-rich systems, dealing with complex decision problems is unavoidable. Normalization is a crucial step in most multi criteria decision making (MCDM) models, to produce comparable and dimensionless data from heterogeneous data. Further, MCDM requires data to be numerical and comparable to be aggregated into a single score per alternative, thus providing their ranking. Several normalization techniques are available, but their performance depends on a number of characteristics of the problem at hand i.e., different normalization techniques may provide different rankings for alternatives. Therefore, it is a challenge to select a suitable normalization technique to represent an appropriate mapping from source data to a common scale. There are some attempts in the literature to address the subject of normalization in MCDM, but there is still a lack of assessment frameworks for evaluating normalization techniques. Hence, the main contribution and objective of this study is to develop an assessment framework for analysing the effects of normalization techniques on ranking of alternatives in MCDM methods and recommend the most appropriate technique for specific decision problems. The proposed assessment framework consists of four steps: (i) determining data types; (ii) chose potential candidate normalization techniques; (iii) analysis and evaluation of techniques; and (iv) selection of the best normalization technique. To validate the efficiency and robustness of the proposed framework, six normalization techniques (Max, Max-Min, Sum, Vector, Logarithmic, and Fuzzification) are selected from linear, semi-linear, and non-linear categories, and tested with four well known MCDM methods (TOPSIS, SAW, AHP, and ELECTRE), from scoring, comparative, and ranking methods. Designing the proposed assessment framework led to a conceptual model allowing an automatic decision-making process, besides recommending the most appropriate normalization technique for MCDM problems. Furthermore, the role of normalization techniques for dynamic multi criteria decision making (DMCDM) in collaborative networks is explored, specifically related to problems of selection of suppliers, business partners, resources, etc. To validate and test the utility and applicability of the assessment framework, a number of case studies are discussed and benchmarking and testimonies from experts are used. Also, an evaluation by the research community of the work developed is presented. The validation process demonstrated that the proposed assessment framework increases the accuracy of results in MCDM decision problems.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-06
2021-12-06T00:00:00Z
2022-01-18T11:31:18Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/131054
url http://hdl.handle.net/10362/131054
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545837873463296