Deteção de Falha de Ignição

Detalhes bibliográficos
Autor(a) principal: Santos, Francisco José Maravilha
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/18279
Resumo: This project analyzes some models of Machine Learning and Deep Learning in the context of misfire detection. Initially, the themes of misfire and Machine Learning are contextualized. The main objective of this project is to replace the existing ignition failure detection algorithm with a Machine Learning model. For this, the process was divided into several phases: problem formulation, data exploration, preparation and pre-processing of the data, building the model, and exporting it. For this, two versions of Matlab were used, 2020a and 2016b. The 2020a version was used to carry out all steps up to the export of the model. The 2016b version was used to perform the comparison with the detection algorithm already developed. Furthermore, dSpace TargetLink was used to generate the C code. The construction of several models allows, through different metrics such as accuracy, precision, recall, and F1 score, to analyze and compare them and determine which model is the best. With the completion of this project, we learned about the ignition failure event, but mainly about Machine Learning. All the necessary steps were learned, both in terms of data preparation and programming for the construction of the model and calculation of the respective metrics to evaluate the models. With this type of work, it was highlighted that Machine Learning is an iterative process, it can be present in the most diverse areas and with many different purposes. Machine Learning is already present in many industries and applications of our daily lives, but it is estimated that in the future its presence will be almost the majority.
id RCAP_434de86cafd91c9150730bce29ca0117
oai_identifier_str oai:recipp.ipp.pt:10400.22/18279
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deteção de Falha de IgniçãoMisfireMachine LearningDeep LearningMATLABFalha de IgniçãoThis project analyzes some models of Machine Learning and Deep Learning in the context of misfire detection. Initially, the themes of misfire and Machine Learning are contextualized. The main objective of this project is to replace the existing ignition failure detection algorithm with a Machine Learning model. For this, the process was divided into several phases: problem formulation, data exploration, preparation and pre-processing of the data, building the model, and exporting it. For this, two versions of Matlab were used, 2020a and 2016b. The 2020a version was used to carry out all steps up to the export of the model. The 2016b version was used to perform the comparison with the detection algorithm already developed. Furthermore, dSpace TargetLink was used to generate the C code. The construction of several models allows, through different metrics such as accuracy, precision, recall, and F1 score, to analyze and compare them and determine which model is the best. With the completion of this project, we learned about the ignition failure event, but mainly about Machine Learning. All the necessary steps were learned, both in terms of data preparation and programming for the construction of the model and calculation of the respective metrics to evaluate the models. With this type of work, it was highlighted that Machine Learning is an iterative process, it can be present in the most diverse areas and with many different purposes. Machine Learning is already present in many industries and applications of our daily lives, but it is estimated that in the future its presence will be almost the majority.Neste projeto é analisado alguns modelos de Machine Learning e Deep Learning no contexto da deteção de falha de ignição. Incialmente é contextualizado os temas falha de ignição e Machine Learning. O objetivo principal deste projeto é substituir o algoritmo de deteção da falha de ignição já existente, por um modelo de Machine Learning. Para isso dividiu-se o processo por várias fases: formulação do problema, exploração dos dados, preparação e pré-processamento dos dados, construção do modelo e exportação deste. Para isso, foram utilizadas duas versões de MATLAB, 2020a e 2016b. A versão 2020a é utilizada para realizar todas as estapas até à exportação do modelo. A versão 2016b é utilizada para realizar a comparação com o algoritmo de deteção já desenvolvido. Para além disso, foi utilizado o dSpace TargetLink para a gerar o código C. A construção de vários modelos permite, através de diferentes métricas como a accuracy, precision, recall e F1 score, analisá-los e compará-los e aferir qual dos modelos é o melhor. Com a realização deste projeto, aprendeu-se sobre o evento de falha de ingnição, mas sobretudo sobre Machine Learning. Aprendeu-se todos os passos necessários, tanto em termos de preparação de dados como a programação para a construção do modelo e cálculo das respetivas métricas para avaliar os modelos. Com este tipo de trabalho, realçou-se que o processo de Machine Learning é um processo iterativo, pode estar presente nas mais diversas áreas e com fins diferentes. O Machine Learning já está muito presente em diversas indústrias e aplicações do nosso quotidiano, mas estima-se que no futuro a sua presença seja quase maioritária.Barbosa, Ramiro de SousaRepositório Científico do Instituto Politécnico do PortoSantos, Francisco José Maravilha20212024-07-28T00:00:00Z2021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/18279TID:202835588enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:10:02Zoai:recipp.ipp.pt:10400.22/18279Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:37:56.929168Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deteção de Falha de Ignição
title Deteção de Falha de Ignição
spellingShingle Deteção de Falha de Ignição
Santos, Francisco José Maravilha
Misfire
Machine Learning
Deep Learning
MATLAB
Falha de Ignição
title_short Deteção de Falha de Ignição
title_full Deteção de Falha de Ignição
title_fullStr Deteção de Falha de Ignição
title_full_unstemmed Deteção de Falha de Ignição
title_sort Deteção de Falha de Ignição
author Santos, Francisco José Maravilha
author_facet Santos, Francisco José Maravilha
author_role author
dc.contributor.none.fl_str_mv Barbosa, Ramiro de Sousa
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Santos, Francisco José Maravilha
dc.subject.por.fl_str_mv Misfire
Machine Learning
Deep Learning
MATLAB
Falha de Ignição
topic Misfire
Machine Learning
Deep Learning
MATLAB
Falha de Ignição
description This project analyzes some models of Machine Learning and Deep Learning in the context of misfire detection. Initially, the themes of misfire and Machine Learning are contextualized. The main objective of this project is to replace the existing ignition failure detection algorithm with a Machine Learning model. For this, the process was divided into several phases: problem formulation, data exploration, preparation and pre-processing of the data, building the model, and exporting it. For this, two versions of Matlab were used, 2020a and 2016b. The 2020a version was used to carry out all steps up to the export of the model. The 2016b version was used to perform the comparison with the detection algorithm already developed. Furthermore, dSpace TargetLink was used to generate the C code. The construction of several models allows, through different metrics such as accuracy, precision, recall, and F1 score, to analyze and compare them and determine which model is the best. With the completion of this project, we learned about the ignition failure event, but mainly about Machine Learning. All the necessary steps were learned, both in terms of data preparation and programming for the construction of the model and calculation of the respective metrics to evaluate the models. With this type of work, it was highlighted that Machine Learning is an iterative process, it can be present in the most diverse areas and with many different purposes. Machine Learning is already present in many industries and applications of our daily lives, but it is estimated that in the future its presence will be almost the majority.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
2024-07-28T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/18279
TID:202835588
url http://hdl.handle.net/10400.22/18279
identifier_str_mv TID:202835588
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131469112672256