Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/5042 |
Resumo: | Techniques based on agglomerative hierarchical clustering constitute one of the most frequent approaches in unsupervised clustering. Some are based on the single linkage methodology, which has been shown to produce good results with sets of clusters of various sizes and shapes. However, the application of this type of algorithms in a wide variety of fields has posed a number of problems, such as the sensitivity to outliers and fluctuations in the density of data points. Additionally, these algorithms do not usually allow for automatic clustering. |
id |
RCAP_43e4b7f142e85956a42ba55b31703d70 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/5042 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clusteringClusteringUnsupervised pattern recognitionHierarchical cluster analysisSingle linkageOutlier removalTechniques based on agglomerative hierarchical clustering constitute one of the most frequent approaches in unsupervised clustering. Some are based on the single linkage methodology, which has been shown to produce good results with sets of clusters of various sizes and shapes. However, the application of this type of algorithms in a wide variety of fields has posed a number of problems, such as the sensitivity to outliers and fluctuations in the density of data points. Additionally, these algorithms do not usually allow for automatic clustering.http://www.sciencedirect.com/science/article/B6TFP-4MYVG3H-1/1/714f82559ca43bbdbff8ad8a1e2d14ac2007info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/5042http://hdl.handle.net/10316/5042engChemometrics and Intelligent Laboratory Systems. 87:2 (2007) 208-217Almeida, J. A. S.Barbosa, L. M. S.Pais, A. A. C. C.Formosinho, S. J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:12:42Zoai:estudogeral.uc.pt:10316/5042Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:01:09.843094Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
title |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
spellingShingle |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering Almeida, J. A. S. Clustering Unsupervised pattern recognition Hierarchical cluster analysis Single linkage Outlier removal |
title_short |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
title_full |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
title_fullStr |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
title_full_unstemmed |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
title_sort |
Improving hierarchical cluster analysis: A new method with outlier detection and automatic clustering |
author |
Almeida, J. A. S. |
author_facet |
Almeida, J. A. S. Barbosa, L. M. S. Pais, A. A. C. C. Formosinho, S. J. |
author_role |
author |
author2 |
Barbosa, L. M. S. Pais, A. A. C. C. Formosinho, S. J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Almeida, J. A. S. Barbosa, L. M. S. Pais, A. A. C. C. Formosinho, S. J. |
dc.subject.por.fl_str_mv |
Clustering Unsupervised pattern recognition Hierarchical cluster analysis Single linkage Outlier removal |
topic |
Clustering Unsupervised pattern recognition Hierarchical cluster analysis Single linkage Outlier removal |
description |
Techniques based on agglomerative hierarchical clustering constitute one of the most frequent approaches in unsupervised clustering. Some are based on the single linkage methodology, which has been shown to produce good results with sets of clusters of various sizes and shapes. However, the application of this type of algorithms in a wide variety of fields has posed a number of problems, such as the sensitivity to outliers and fluctuations in the density of data points. Additionally, these algorithms do not usually allow for automatic clustering. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/5042 http://hdl.handle.net/10316/5042 |
url |
http://hdl.handle.net/10316/5042 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chemometrics and Intelligent Laboratory Systems. 87:2 (2007) 208-217 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
aplication/PDF |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133904275243008 |