Intrusion detection in computer networks using optimum-path forest clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/LCN.2012.6423588 http://hdl.handle.net/11449/73827 |
Resumo: | Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE. |
id |
UNSP_3a4786758e542f23a491843ddd6504b7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73827 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Intrusion detection in computer networks using optimum-path forest clusteringMachine learning techniquesManual labelingOptimum-path forestsPattern recognition techniquesTraditional clusteringUnsupervised techniquesForestryIntrusion detectionLearning systemsPattern recognitionClustering algorithmsAlgorithmsDataNetworksSetNowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.Department of Computing Universidade Estadual Paulista (UNESP)Department of Computing Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (Unesp)Costa, Kelton [UNESP]Pereira, Clayton [UNESP]Nakamura, Rodrigo [UNESP]Papa, Joao [UNESP]2014-05-27T11:27:18Z2014-05-27T11:27:18Z2012-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject128-131http://dx.doi.org/10.1109/LCN.2012.6423588Proceedings - Conference on Local Computer Networks, LCN, p. 128-131.http://hdl.handle.net/11449/7382710.1109/LCN.2012.6423588WOS:0003169636000162-s2.0-84874287364Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - Conference on Local Computer Networks, LCNinfo:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/73827Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:20:20.822845Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Intrusion detection in computer networks using optimum-path forest clustering |
title |
Intrusion detection in computer networks using optimum-path forest clustering |
spellingShingle |
Intrusion detection in computer networks using optimum-path forest clustering Costa, Kelton [UNESP] Machine learning techniques Manual labeling Optimum-path forests Pattern recognition techniques Traditional clustering Unsupervised techniques Forestry Intrusion detection Learning systems Pattern recognition Clustering algorithms Algorithms Data Networks Set |
title_short |
Intrusion detection in computer networks using optimum-path forest clustering |
title_full |
Intrusion detection in computer networks using optimum-path forest clustering |
title_fullStr |
Intrusion detection in computer networks using optimum-path forest clustering |
title_full_unstemmed |
Intrusion detection in computer networks using optimum-path forest clustering |
title_sort |
Intrusion detection in computer networks using optimum-path forest clustering |
author |
Costa, Kelton [UNESP] |
author_facet |
Costa, Kelton [UNESP] Pereira, Clayton [UNESP] Nakamura, Rodrigo [UNESP] Papa, Joao [UNESP] |
author_role |
author |
author2 |
Pereira, Clayton [UNESP] Nakamura, Rodrigo [UNESP] Papa, Joao [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Costa, Kelton [UNESP] Pereira, Clayton [UNESP] Nakamura, Rodrigo [UNESP] Papa, Joao [UNESP] |
dc.subject.por.fl_str_mv |
Machine learning techniques Manual labeling Optimum-path forests Pattern recognition techniques Traditional clustering Unsupervised techniques Forestry Intrusion detection Learning systems Pattern recognition Clustering algorithms Algorithms Data Networks Set |
topic |
Machine learning techniques Manual labeling Optimum-path forests Pattern recognition techniques Traditional clustering Unsupervised techniques Forestry Intrusion detection Learning systems Pattern recognition Clustering algorithms Algorithms Data Networks Set |
description |
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12-01 2014-05-27T11:27:18Z 2014-05-27T11:27:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/LCN.2012.6423588 Proceedings - Conference on Local Computer Networks, LCN, p. 128-131. http://hdl.handle.net/11449/73827 10.1109/LCN.2012.6423588 WOS:000316963600016 2-s2.0-84874287364 |
url |
http://dx.doi.org/10.1109/LCN.2012.6423588 http://hdl.handle.net/11449/73827 |
identifier_str_mv |
Proceedings - Conference on Local Computer Networks, LCN, p. 128-131. 10.1109/LCN.2012.6423588 WOS:000316963600016 2-s2.0-84874287364 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - Conference on Local Computer Networks, LCN |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
128-131 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128498450038784 |