Intrusion detection in computer networks using optimum-path forest clustering

Detalhes bibliográficos
Autor(a) principal: Costa, Kelton [UNESP]
Data de Publicação: 2012
Outros Autores: Pereira, Clayton [UNESP], Nakamura, Rodrigo [UNESP], Papa, Joao [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/LCN.2012.6423588
http://hdl.handle.net/11449/73827
Resumo: Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
id UNSP_3a4786758e542f23a491843ddd6504b7
oai_identifier_str oai:repositorio.unesp.br:11449/73827
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Intrusion detection in computer networks using optimum-path forest clusteringMachine learning techniquesManual labelingOptimum-path forestsPattern recognition techniquesTraditional clusteringUnsupervised techniquesForestryIntrusion detectionLearning systemsPattern recognitionClustering algorithmsAlgorithmsDataNetworksSetNowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.Department of Computing Universidade Estadual Paulista (UNESP)Department of Computing Universidade Estadual Paulista (UNESP)Universidade Estadual Paulista (Unesp)Costa, Kelton [UNESP]Pereira, Clayton [UNESP]Nakamura, Rodrigo [UNESP]Papa, Joao [UNESP]2014-05-27T11:27:18Z2014-05-27T11:27:18Z2012-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject128-131http://dx.doi.org/10.1109/LCN.2012.6423588Proceedings - Conference on Local Computer Networks, LCN, p. 128-131.http://hdl.handle.net/11449/7382710.1109/LCN.2012.6423588WOS:0003169636000162-s2.0-84874287364Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - Conference on Local Computer Networks, LCNinfo:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/73827Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:20:20.822845Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Intrusion detection in computer networks using optimum-path forest clustering
title Intrusion detection in computer networks using optimum-path forest clustering
spellingShingle Intrusion detection in computer networks using optimum-path forest clustering
Costa, Kelton [UNESP]
Machine learning techniques
Manual labeling
Optimum-path forests
Pattern recognition techniques
Traditional clustering
Unsupervised techniques
Forestry
Intrusion detection
Learning systems
Pattern recognition
Clustering algorithms
Algorithms
Data
Networks
Set
title_short Intrusion detection in computer networks using optimum-path forest clustering
title_full Intrusion detection in computer networks using optimum-path forest clustering
title_fullStr Intrusion detection in computer networks using optimum-path forest clustering
title_full_unstemmed Intrusion detection in computer networks using optimum-path forest clustering
title_sort Intrusion detection in computer networks using optimum-path forest clustering
author Costa, Kelton [UNESP]
author_facet Costa, Kelton [UNESP]
Pereira, Clayton [UNESP]
Nakamura, Rodrigo [UNESP]
Papa, Joao [UNESP]
author_role author
author2 Pereira, Clayton [UNESP]
Nakamura, Rodrigo [UNESP]
Papa, Joao [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Costa, Kelton [UNESP]
Pereira, Clayton [UNESP]
Nakamura, Rodrigo [UNESP]
Papa, Joao [UNESP]
dc.subject.por.fl_str_mv Machine learning techniques
Manual labeling
Optimum-path forests
Pattern recognition techniques
Traditional clustering
Unsupervised techniques
Forestry
Intrusion detection
Learning systems
Pattern recognition
Clustering algorithms
Algorithms
Data
Networks
Set
topic Machine learning techniques
Manual labeling
Optimum-path forests
Pattern recognition techniques
Traditional clustering
Unsupervised techniques
Forestry
Intrusion detection
Learning systems
Pattern recognition
Clustering algorithms
Algorithms
Data
Networks
Set
description Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
publishDate 2012
dc.date.none.fl_str_mv 2012-12-01
2014-05-27T11:27:18Z
2014-05-27T11:27:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/LCN.2012.6423588
Proceedings - Conference on Local Computer Networks, LCN, p. 128-131.
http://hdl.handle.net/11449/73827
10.1109/LCN.2012.6423588
WOS:000316963600016
2-s2.0-84874287364
url http://dx.doi.org/10.1109/LCN.2012.6423588
http://hdl.handle.net/11449/73827
identifier_str_mv Proceedings - Conference on Local Computer Networks, LCN, p. 128-131.
10.1109/LCN.2012.6423588
WOS:000316963600016
2-s2.0-84874287364
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - Conference on Local Computer Networks, LCN
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 128-131
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128498450038784