Bidiagonal factorization of tetradiagonal matrices and Darboux transformations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/38123 |
Resumo: | Recently a spectral Favard theorem for bounded banded lower Hessenberg matrices that admit a positive bidiagonal factorization was presented. These type of matrices are oscillatory. In this paper the Lima-Loureiro hypergeometric multiple orthogonal polynomials and the Jacobi-Pi\~neiro multiple orthogonal polynomials are discussed at the light of this bidiagonal factorization for tetradiagonal matrices. The Darboux transformations of tetradiagonal Hessenberg matrices is studied and Christoffel formulas for the elements of the bidiagonal factorization are given, i.e., the bidiagonal factorization is given in terms of the recursion polynomials evaluated at the origin. |
id |
RCAP_440ae91c7e31924806c6fd477ecd199d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/38123 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformationsTetradiagonal Hessenberg matricesOscillatory matricesTotally nonnegative matricesMultiple orthogonal polynomialsFavard spectral representationDarboux transformationsChristofel FormulasRecently a spectral Favard theorem for bounded banded lower Hessenberg matrices that admit a positive bidiagonal factorization was presented. These type of matrices are oscillatory. In this paper the Lima-Loureiro hypergeometric multiple orthogonal polynomials and the Jacobi-Pi\~neiro multiple orthogonal polynomials are discussed at the light of this bidiagonal factorization for tetradiagonal matrices. The Darboux transformations of tetradiagonal Hessenberg matrices is studied and Christoffel formulas for the elements of the bidiagonal factorization are given, i.e., the bidiagonal factorization is given in terms of the recursion polynomials evaluated at the origin.Springer2023-06-19T09:39:14Z2023-04-16T00:00:00Z2023-04-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/38123eng1664-236810.1007/s13324-023-00801-1Branquinho, AmílcarFoulquié-Moreno, AnaMañas, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:14:26Zoai:ria.ua.pt:10773/38123Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:08:39.455821Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
title |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
spellingShingle |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations Branquinho, Amílcar Tetradiagonal Hessenberg matrices Oscillatory matrices Totally nonnegative matrices Multiple orthogonal polynomials Favard spectral representation Darboux transformations Christofel Formulas |
title_short |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
title_full |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
title_fullStr |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
title_full_unstemmed |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
title_sort |
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations |
author |
Branquinho, Amílcar |
author_facet |
Branquinho, Amílcar Foulquié-Moreno, Ana Mañas, Manuel |
author_role |
author |
author2 |
Foulquié-Moreno, Ana Mañas, Manuel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Branquinho, Amílcar Foulquié-Moreno, Ana Mañas, Manuel |
dc.subject.por.fl_str_mv |
Tetradiagonal Hessenberg matrices Oscillatory matrices Totally nonnegative matrices Multiple orthogonal polynomials Favard spectral representation Darboux transformations Christofel Formulas |
topic |
Tetradiagonal Hessenberg matrices Oscillatory matrices Totally nonnegative matrices Multiple orthogonal polynomials Favard spectral representation Darboux transformations Christofel Formulas |
description |
Recently a spectral Favard theorem for bounded banded lower Hessenberg matrices that admit a positive bidiagonal factorization was presented. These type of matrices are oscillatory. In this paper the Lima-Loureiro hypergeometric multiple orthogonal polynomials and the Jacobi-Pi\~neiro multiple orthogonal polynomials are discussed at the light of this bidiagonal factorization for tetradiagonal matrices. The Darboux transformations of tetradiagonal Hessenberg matrices is studied and Christoffel formulas for the elements of the bidiagonal factorization are given, i.e., the bidiagonal factorization is given in terms of the recursion polynomials evaluated at the origin. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-19T09:39:14Z 2023-04-16T00:00:00Z 2023-04-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/38123 |
url |
http://hdl.handle.net/10773/38123 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1664-2368 10.1007/s13324-023-00801-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137738440572928 |