Positive bidiagonal factorization of tetradiagonal Hessenberg matrices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/39325 |
Resumo: | Recently, a spectral Favard theorem was presented for bounded banded lower Hessenberg matrices that possess a positive bidiagonal factorization. The paper establishes conditions, expressed in terms of continued fractions, under which an oscillatory tetradiagonal Hessenberg matrix can have such a positive bidiagonal factorization. Oscillatory tetradiagonal Toeplitz matrices are examined as a case study of matrices that admit a positive bidiagonal factorization. Furthermore, the paper proves that oscillatory banded Hessenberg matrices are organized in rays, where the origin of the ray does not have a positive bidiagonal factorization, but all the interior points of the ray do have such a positive bidiagonal factorization. |
id |
RCAP_f78adb80ea91c143e18d29dbf0d4b0cf |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/39325 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Positive bidiagonal factorization of tetradiagonal Hessenberg matricesBanded Hessenberg matricesOscillatory matricesTotally nonnegative matricesContinued fractionsGauss–Borel factorizationBidiagonal factorizationOscillatory retracted matricesRecently, a spectral Favard theorem was presented for bounded banded lower Hessenberg matrices that possess a positive bidiagonal factorization. The paper establishes conditions, expressed in terms of continued fractions, under which an oscillatory tetradiagonal Hessenberg matrix can have such a positive bidiagonal factorization. Oscillatory tetradiagonal Toeplitz matrices are examined as a case study of matrices that admit a positive bidiagonal factorization. Furthermore, the paper proves that oscillatory banded Hessenberg matrices are organized in rays, where the origin of the ray does not have a positive bidiagonal factorization, but all the interior points of the ray do have such a positive bidiagonal factorization.Elsevier2023-09-06T17:03:35Z2023-11-15T00:00:00Z2023-11-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/39325eng0024-379510.1016/j.laa.2023.08.001Branquinho, AmílcarFoulquié-Moreno, AnaMañas, Manuelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:16:42Zoai:ria.ua.pt:10773/39325Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:29.630558Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
title |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
spellingShingle |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices Branquinho, Amílcar Banded Hessenberg matrices Oscillatory matrices Totally nonnegative matrices Continued fractions Gauss–Borel factorization Bidiagonal factorization Oscillatory retracted matrices |
title_short |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
title_full |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
title_fullStr |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
title_full_unstemmed |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
title_sort |
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices |
author |
Branquinho, Amílcar |
author_facet |
Branquinho, Amílcar Foulquié-Moreno, Ana Mañas, Manuel |
author_role |
author |
author2 |
Foulquié-Moreno, Ana Mañas, Manuel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Branquinho, Amílcar Foulquié-Moreno, Ana Mañas, Manuel |
dc.subject.por.fl_str_mv |
Banded Hessenberg matrices Oscillatory matrices Totally nonnegative matrices Continued fractions Gauss–Borel factorization Bidiagonal factorization Oscillatory retracted matrices |
topic |
Banded Hessenberg matrices Oscillatory matrices Totally nonnegative matrices Continued fractions Gauss–Borel factorization Bidiagonal factorization Oscillatory retracted matrices |
description |
Recently, a spectral Favard theorem was presented for bounded banded lower Hessenberg matrices that possess a positive bidiagonal factorization. The paper establishes conditions, expressed in terms of continued fractions, under which an oscillatory tetradiagonal Hessenberg matrix can have such a positive bidiagonal factorization. Oscillatory tetradiagonal Toeplitz matrices are examined as a case study of matrices that admit a positive bidiagonal factorization. Furthermore, the paper proves that oscillatory banded Hessenberg matrices are organized in rays, where the origin of the ray does not have a positive bidiagonal factorization, but all the interior points of the ray do have such a positive bidiagonal factorization. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-06T17:03:35Z 2023-11-15T00:00:00Z 2023-11-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/39325 |
url |
http://hdl.handle.net/10773/39325 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 10.1016/j.laa.2023.08.001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137745502732288 |