Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior

Detalhes bibliográficos
Autor(a) principal: Mendes, B. B.
Data de Publicação: 2018
Outros Autores: Gomez-Florit, Manuel, Pires, R. A., Domingues, R. M. A., Reis, R. L., Gomes, Manuela E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/58601
Resumo: The extracellular matrix (ECM)-biomimetic fibrillar structure of platelet lysate (PL) gels along with its enriched milieu of biomolecules has drawn significant interest in regenerative medicine applications. However, PL-based gels have poor structural stability which severely limits its performance as a bioinstructive biomaterial. Here, rod-shaped cellulose nanocrystals (CNC) are used as a novel approach to modulate the physical and biochemical microenvironment of PL gels enabling their effective use as injectable human-based cell scaffolds with a level of biomimicry that is difficult to recreate with synthetic biomaterials. The incorporation of CNC (0 to 0.61 wt.%) into the PL fibrillar network during the coagulation cascade leads to decreased fiber branching, increased interfiber porosity (from 66 to 83%) and modulate fiber (from 1.4 ± 0.7 to 27 ± 12 kPa) and bulk hydrogel (from 18 ± 4 to 1256 ± 82 Pa) mechanical properties. As result of these physicochemical alterations, nanocomposite PL hydrogels resist to the typical extensive clot retraction (from 76 ± 1 to 24 ± 3 at Day 7) and show favored retention of PL bioactive molecules. The feedback of these cues on the fate of human adipose-derived stem cells is evaluated, showing how it can be explored to modulate the commitment of encapsulated stem cells toward different genetic phenotypes without the need for additional external biological stimuli. These fibrillar nanocomposite hydrogels allow therefore to explore the outstanding biological properties of human-based PL as an efficient engineered ECM which can be tailored to trigger specific regenerative pathways in minimal invasive strategies.
id RCAP_4420b2adf9d61af3a57f35c9807547a3
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/58601
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behaviorBlood derivativesCellulose nanocrystalsCiências Médicas::Biotecnologia MédicaScience & TechnologyThe extracellular matrix (ECM)-biomimetic fibrillar structure of platelet lysate (PL) gels along with its enriched milieu of biomolecules has drawn significant interest in regenerative medicine applications. However, PL-based gels have poor structural stability which severely limits its performance as a bioinstructive biomaterial. Here, rod-shaped cellulose nanocrystals (CNC) are used as a novel approach to modulate the physical and biochemical microenvironment of PL gels enabling their effective use as injectable human-based cell scaffolds with a level of biomimicry that is difficult to recreate with synthetic biomaterials. The incorporation of CNC (0 to 0.61 wt.%) into the PL fibrillar network during the coagulation cascade leads to decreased fiber branching, increased interfiber porosity (from 66 to 83%) and modulate fiber (from 1.4 ± 0.7 to 27 ± 12 kPa) and bulk hydrogel (from 18 ± 4 to 1256 ± 82 Pa) mechanical properties. As result of these physicochemical alterations, nanocomposite PL hydrogels resist to the typical extensive clot retraction (from 76 ± 1 to 24 ± 3 at Day 7) and show favored retention of PL bioactive molecules. The feedback of these cues on the fate of human adipose-derived stem cells is evaluated, showing how it can be explored to modulate the commitment of encapsulated stem cells toward different genetic phenotypes without the need for additional external biological stimuli. These fibrillar nanocomposite hydrogels allow therefore to explore the outstanding biological properties of human-based PL as an efficient engineered ECM which can be tailored to trigger specific regenerative pathways in minimal invasive strategies.The authors thank the Hospital da Prelada (Porto, Portugal) for providing adipose tissue samples. The authors acknowledge the financial support from project Recognize (UTAP-ICDT/CTM-BIO/0023/2014), project NORTE-01-0145FEDER-000021 supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), the European Union Framework Programme for Research and Innovation HORIZON 2020, under the TEAMING Grant agreement No. 739572 – The Discoveries CTR EU, Forecast 668983, Marie Skłodowska-Curie grant agreement No. 706996 (PrinTendon) and CHEM2NATURE 692333; FCT/MCTES (Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia, e Ensino Superior) and the Fundo Social Europeu através do Programa Operacional do Capital Humano (FSE/POCH) in the framework of PhD grant PD/59/2013 – PD/BD/113807/2015 for BBM, Post-Doc grant SFRH/BPD/112459/2015 for R.D.info:eu-repo/semantics/publishedVersionRoyal Society of ChemistryUniversidade do MinhoMendes, B. B.Gomez-Florit, ManuelPires, R. A.Domingues, R. M. A.Reis, R. L.Gomes, Manuela E.2018-082018-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/58601engMendes B. B., Gómez-Florit M., Pires R. A., Domingues R. M. A., Reis R. L., Gomes M. E. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior, Nanoscale, Vol. 10, Issue 36, pp. 17388-17401, doi:10.1039/C8NR04273J, 20182040-33642040-337210.1039/C8NR04273J30203823https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr04273jinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:12:08Zoai:repositorium.sdum.uminho.pt:1822/58601Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:04:02.337998Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
title Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
spellingShingle Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
Mendes, B. B.
Blood derivatives
Cellulose nanocrystals
Ciências Médicas::Biotecnologia Médica
Science & Technology
title_short Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
title_full Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
title_fullStr Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
title_full_unstemmed Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
title_sort Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior
author Mendes, B. B.
author_facet Mendes, B. B.
Gomez-Florit, Manuel
Pires, R. A.
Domingues, R. M. A.
Reis, R. L.
Gomes, Manuela E.
author_role author
author2 Gomez-Florit, Manuel
Pires, R. A.
Domingues, R. M. A.
Reis, R. L.
Gomes, Manuela E.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Mendes, B. B.
Gomez-Florit, Manuel
Pires, R. A.
Domingues, R. M. A.
Reis, R. L.
Gomes, Manuela E.
dc.subject.por.fl_str_mv Blood derivatives
Cellulose nanocrystals
Ciências Médicas::Biotecnologia Médica
Science & Technology
topic Blood derivatives
Cellulose nanocrystals
Ciências Médicas::Biotecnologia Médica
Science & Technology
description The extracellular matrix (ECM)-biomimetic fibrillar structure of platelet lysate (PL) gels along with its enriched milieu of biomolecules has drawn significant interest in regenerative medicine applications. However, PL-based gels have poor structural stability which severely limits its performance as a bioinstructive biomaterial. Here, rod-shaped cellulose nanocrystals (CNC) are used as a novel approach to modulate the physical and biochemical microenvironment of PL gels enabling their effective use as injectable human-based cell scaffolds with a level of biomimicry that is difficult to recreate with synthetic biomaterials. The incorporation of CNC (0 to 0.61 wt.%) into the PL fibrillar network during the coagulation cascade leads to decreased fiber branching, increased interfiber porosity (from 66 to 83%) and modulate fiber (from 1.4 ± 0.7 to 27 ± 12 kPa) and bulk hydrogel (from 18 ± 4 to 1256 ± 82 Pa) mechanical properties. As result of these physicochemical alterations, nanocomposite PL hydrogels resist to the typical extensive clot retraction (from 76 ± 1 to 24 ± 3 at Day 7) and show favored retention of PL bioactive molecules. The feedback of these cues on the fate of human adipose-derived stem cells is evaluated, showing how it can be explored to modulate the commitment of encapsulated stem cells toward different genetic phenotypes without the need for additional external biological stimuli. These fibrillar nanocomposite hydrogels allow therefore to explore the outstanding biological properties of human-based PL as an efficient engineered ECM which can be tailored to trigger specific regenerative pathways in minimal invasive strategies.
publishDate 2018
dc.date.none.fl_str_mv 2018-08
2018-08-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/58601
url http://hdl.handle.net/1822/58601
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Mendes B. B., Gómez-Florit M., Pires R. A., Domingues R. M. A., Reis R. L., Gomes M. E. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior, Nanoscale, Vol. 10, Issue 36, pp. 17388-17401, doi:10.1039/C8NR04273J, 2018
2040-3364
2040-3372
10.1039/C8NR04273J
30203823
https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr04273j
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132447927959552