Learning by observation of agent software images

Detalhes bibliográficos
Autor(a) principal: Costa, P.
Data de Publicação: 2013
Outros Autores: Botelho, L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/7310
Resumo: Learning by observation can be of key importance whenever agents sharing similar features want to learn from each other. This paper presents an agent architecture that enables software agents to learn by direct observation of the actions executed by expert agents while they are performing a task. This is possible because the proposed architecture displays information that is essential for observation, making it possible for software agents to observe each other. The agent architecture supports a learning process that covers all aspects of learning by observation, such as discovering and observing experts, learning from the observed data, applying the acquired knowledge and evaluating the agent's progress. The evaluation provides control over the decision to obtain new knowledge or apply the acquired knowledge to new problems. We combine two methods for learning from the observed information. The first one, the recall method, uses the sequence on which the actions were observed to solve new problems. The second one, the classification method, categorizes the information in the observed data and determines to which set of categories the new problems belong. Results show that agents are able to learn in conditions where common supervised learning algorithms fail, such as when agents do not know the results of their actions a priori or when not all the effects of the actions are visible. The results also show that our approach provides better results than other learning methods since it requires shorter learning periods.
id RCAP_4420e0769bd5b6f0567abd67a416045a
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/7310
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Learning by observation of agent software imagesLearning through observationSoftware ImageLearning by observation can be of key importance whenever agents sharing similar features want to learn from each other. This paper presents an agent architecture that enables software agents to learn by direct observation of the actions executed by expert agents while they are performing a task. This is possible because the proposed architecture displays information that is essential for observation, making it possible for software agents to observe each other. The agent architecture supports a learning process that covers all aspects of learning by observation, such as discovering and observing experts, learning from the observed data, applying the acquired knowledge and evaluating the agent's progress. The evaluation provides control over the decision to obtain new knowledge or apply the acquired knowledge to new problems. We combine two methods for learning from the observed information. The first one, the recall method, uses the sequence on which the actions were observed to solve new problems. The second one, the classification method, categorizes the information in the observed data and determines to which set of categories the new problems belong. Results show that agents are able to learn in conditions where common supervised learning algorithms fail, such as when agents do not know the results of their actions a priori or when not all the effects of the actions are visible. The results also show that our approach provides better results than other learning methods since it requires shorter learning periods.AI Access Foundation2014-05-21T15:18:01Z2013-01-01T00:00:00Z20132019-05-17T14:25:17Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/7310eng1076-975710.1613/jair.3989Costa, P.Botelho, L.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:44:51Zoai:repositorio.iscte-iul.pt:10071/7310Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:20.282530Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Learning by observation of agent software images
title Learning by observation of agent software images
spellingShingle Learning by observation of agent software images
Costa, P.
Learning through observation
Software Image
title_short Learning by observation of agent software images
title_full Learning by observation of agent software images
title_fullStr Learning by observation of agent software images
title_full_unstemmed Learning by observation of agent software images
title_sort Learning by observation of agent software images
author Costa, P.
author_facet Costa, P.
Botelho, L.
author_role author
author2 Botelho, L.
author2_role author
dc.contributor.author.fl_str_mv Costa, P.
Botelho, L.
dc.subject.por.fl_str_mv Learning through observation
Software Image
topic Learning through observation
Software Image
description Learning by observation can be of key importance whenever agents sharing similar features want to learn from each other. This paper presents an agent architecture that enables software agents to learn by direct observation of the actions executed by expert agents while they are performing a task. This is possible because the proposed architecture displays information that is essential for observation, making it possible for software agents to observe each other. The agent architecture supports a learning process that covers all aspects of learning by observation, such as discovering and observing experts, learning from the observed data, applying the acquired knowledge and evaluating the agent's progress. The evaluation provides control over the decision to obtain new knowledge or apply the acquired knowledge to new problems. We combine two methods for learning from the observed information. The first one, the recall method, uses the sequence on which the actions were observed to solve new problems. The second one, the classification method, categorizes the information in the observed data and determines to which set of categories the new problems belong. Results show that agents are able to learn in conditions where common supervised learning algorithms fail, such as when agents do not know the results of their actions a priori or when not all the effects of the actions are visible. The results also show that our approach provides better results than other learning methods since it requires shorter learning periods.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2014-05-21T15:18:01Z
2019-05-17T14:25:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/7310
url http://hdl.handle.net/10071/7310
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1076-9757
10.1613/jair.3989
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv AI Access Foundation
publisher.none.fl_str_mv AI Access Foundation
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134774679306240