Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity

Detalhes bibliográficos
Autor(a) principal: Ramos, João R. D.
Data de Publicação: 2018
Outros Autores: Travasso, Rui, Carvalho, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/83618
https://doi.org/10.1103/PhysRevE.97.012408
Resumo: The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).
id RCAP_451add7cc8a52b5d98b57f10ec06d5c3
oai_identifier_str oai:estudogeral.uc.pt:10316/83618
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidityThe formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).American Physical Society2018-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/83618http://hdl.handle.net/10316/83618https://doi.org/10.1103/PhysRevE.97.012408eng2470-005329448490Ramos, João R. D.Travasso, RuiCarvalho, Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-11-05T09:37:10Zoai:estudogeral.uc.pt:10316/83618Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:05:19.249874Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
title Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
spellingShingle Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
Ramos, João R. D.
title_short Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
title_full Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
title_fullStr Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
title_full_unstemmed Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
title_sort Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity
author Ramos, João R. D.
author_facet Ramos, João R. D.
Travasso, Rui
Carvalho, João
author_role author
author2 Travasso, Rui
Carvalho, João
author2_role author
author
dc.contributor.author.fl_str_mv Ramos, João R. D.
Travasso, Rui
Carvalho, João
description The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/83618
http://hdl.handle.net/10316/83618
https://doi.org/10.1103/PhysRevE.97.012408
url http://hdl.handle.net/10316/83618
https://doi.org/10.1103/PhysRevE.97.012408
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2470-0053
29448490
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133945047023616