Existence and location results for hinged beam equations with unbounded nonlinearities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/2497 |
Resumo: | This work presents some existence, non-existence and location results for the problem composed by the fourth-order fully nonlinear equation u^4(x)= f(x,u(x),u'(x),u''(x),u'''(x))+ sp(x) for x in [0; 1], where f and p are continuous functions and s is a real parameter, with the Lidstone boundary conditions u(0)= u(1)=u''(0)=u''(1)=0. This problem models several phenomena, such as, the bending of an elastic beam simply supported at the endpoints. The arguments used apply a lower and upper solutions technique, a priori estimations and topological degree theory. In this paper we replace the usual bilateral Nagumo condition by some one-sided conditions, which enables us to consider unbounded nonlinearities. |
id |
RCAP_45235212b6f455586be160e9608ee8d3 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/2497 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Existence and location results for hinged beam equations with unbounded nonlinearitiesAmbrosetti-Prodi equationsLower and upper solutionsThis work presents some existence, non-existence and location results for the problem composed by the fourth-order fully nonlinear equation u^4(x)= f(x,u(x),u'(x),u''(x),u'''(x))+ sp(x) for x in [0; 1], where f and p are continuous functions and s is a real parameter, with the Lidstone boundary conditions u(0)= u(1)=u''(0)=u''(1)=0. This problem models several phenomena, such as, the bending of an elastic beam simply supported at the endpoints. The arguments used apply a lower and upper solutions technique, a priori estimations and topological degree theory. In this paper we replace the usual bilateral Nagumo condition by some one-sided conditions, which enables us to consider unbounded nonlinearities.Elsevier2011-01-24T16:52:45Z2011-01-242009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article312048 bytesapplication/pdfhttp://hdl.handle.net/10174/2497http://hdl.handle.net/10174/2497enge1519-152671Nonlinear Analysis71livrefminhos@uevora.ptjfzero@gmail.comNonlinear Analysis334Minhós, FelizFialho, Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:02Zoai:dspace.uevora.pt:10174/2497Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:12.257403Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Existence and location results for hinged beam equations with unbounded nonlinearities |
title |
Existence and location results for hinged beam equations with unbounded nonlinearities |
spellingShingle |
Existence and location results for hinged beam equations with unbounded nonlinearities Minhós, Feliz Ambrosetti-Prodi equations Lower and upper solutions |
title_short |
Existence and location results for hinged beam equations with unbounded nonlinearities |
title_full |
Existence and location results for hinged beam equations with unbounded nonlinearities |
title_fullStr |
Existence and location results for hinged beam equations with unbounded nonlinearities |
title_full_unstemmed |
Existence and location results for hinged beam equations with unbounded nonlinearities |
title_sort |
Existence and location results for hinged beam equations with unbounded nonlinearities |
author |
Minhós, Feliz |
author_facet |
Minhós, Feliz Fialho, João |
author_role |
author |
author2 |
Fialho, João |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Minhós, Feliz Fialho, João |
dc.subject.por.fl_str_mv |
Ambrosetti-Prodi equations Lower and upper solutions |
topic |
Ambrosetti-Prodi equations Lower and upper solutions |
description |
This work presents some existence, non-existence and location results for the problem composed by the fourth-order fully nonlinear equation u^4(x)= f(x,u(x),u'(x),u''(x),u'''(x))+ sp(x) for x in [0; 1], where f and p are continuous functions and s is a real parameter, with the Lidstone boundary conditions u(0)= u(1)=u''(0)=u''(1)=0. This problem models several phenomena, such as, the bending of an elastic beam simply supported at the endpoints. The arguments used apply a lower and upper solutions technique, a priori estimations and topological degree theory. In this paper we replace the usual bilateral Nagumo condition by some one-sided conditions, which enables us to consider unbounded nonlinearities. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01T00:00:00Z 2011-01-24T16:52:45Z 2011-01-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/2497 http://hdl.handle.net/10174/2497 |
url |
http://hdl.handle.net/10174/2497 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
e1519-1526 71 Nonlinear Analysis 71 livre fminhos@uevora.pt jfzero@gmail.com Nonlinear Analysis 334 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
312048 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136465198776320 |