Existence and location results for hinged beam equations with unbounded nonlinearities

Detalhes bibliográficos
Autor(a) principal: Minhós, Feliz
Data de Publicação: 2009
Outros Autores: Fialho, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/2497
Resumo: This work presents some existence, non-existence and location results for the problem composed by the fourth-order fully nonlinear equation u^4(x)= f(x,u(x),u'(x),u''(x),u'''(x))+ sp(x) for x in [0; 1], where f and p are continuous functions and s is a real parameter, with the Lidstone boundary conditions u(0)= u(1)=u''(0)=u''(1)=0. This problem models several phenomena, such as, the bending of an elastic beam simply supported at the endpoints. The arguments used apply a lower and upper solutions technique, a priori estimations and topological degree theory. In this paper we replace the usual bilateral Nagumo condition by some one-sided conditions, which enables us to consider unbounded nonlinearities.
id RCAP_45235212b6f455586be160e9608ee8d3
oai_identifier_str oai:dspace.uevora.pt:10174/2497
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Existence and location results for hinged beam equations with unbounded nonlinearitiesAmbrosetti-Prodi equationsLower and upper solutionsThis work presents some existence, non-existence and location results for the problem composed by the fourth-order fully nonlinear equation u^4(x)= f(x,u(x),u'(x),u''(x),u'''(x))+ sp(x) for x in [0; 1], where f and p are continuous functions and s is a real parameter, with the Lidstone boundary conditions u(0)= u(1)=u''(0)=u''(1)=0. This problem models several phenomena, such as, the bending of an elastic beam simply supported at the endpoints. The arguments used apply a lower and upper solutions technique, a priori estimations and topological degree theory. In this paper we replace the usual bilateral Nagumo condition by some one-sided conditions, which enables us to consider unbounded nonlinearities.Elsevier2011-01-24T16:52:45Z2011-01-242009-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article312048 bytesapplication/pdfhttp://hdl.handle.net/10174/2497http://hdl.handle.net/10174/2497enge1519-152671Nonlinear Analysis71livrefminhos@uevora.ptjfzero@gmail.comNonlinear Analysis334Minhós, FelizFialho, Joãoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:02Zoai:dspace.uevora.pt:10174/2497Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:12.257403Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Existence and location results for hinged beam equations with unbounded nonlinearities
title Existence and location results for hinged beam equations with unbounded nonlinearities
spellingShingle Existence and location results for hinged beam equations with unbounded nonlinearities
Minhós, Feliz
Ambrosetti-Prodi equations
Lower and upper solutions
title_short Existence and location results for hinged beam equations with unbounded nonlinearities
title_full Existence and location results for hinged beam equations with unbounded nonlinearities
title_fullStr Existence and location results for hinged beam equations with unbounded nonlinearities
title_full_unstemmed Existence and location results for hinged beam equations with unbounded nonlinearities
title_sort Existence and location results for hinged beam equations with unbounded nonlinearities
author Minhós, Feliz
author_facet Minhós, Feliz
Fialho, João
author_role author
author2 Fialho, João
author2_role author
dc.contributor.author.fl_str_mv Minhós, Feliz
Fialho, João
dc.subject.por.fl_str_mv Ambrosetti-Prodi equations
Lower and upper solutions
topic Ambrosetti-Prodi equations
Lower and upper solutions
description This work presents some existence, non-existence and location results for the problem composed by the fourth-order fully nonlinear equation u^4(x)= f(x,u(x),u'(x),u''(x),u'''(x))+ sp(x) for x in [0; 1], where f and p are continuous functions and s is a real parameter, with the Lidstone boundary conditions u(0)= u(1)=u''(0)=u''(1)=0. This problem models several phenomena, such as, the bending of an elastic beam simply supported at the endpoints. The arguments used apply a lower and upper solutions technique, a priori estimations and topological degree theory. In this paper we replace the usual bilateral Nagumo condition by some one-sided conditions, which enables us to consider unbounded nonlinearities.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-01T00:00:00Z
2011-01-24T16:52:45Z
2011-01-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/2497
http://hdl.handle.net/10174/2497
url http://hdl.handle.net/10174/2497
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv e1519-1526
71
Nonlinear Analysis
71
livre
fminhos@uevora.pt
jfzero@gmail.com
Nonlinear Analysis
334
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 312048 bytes
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136465198776320