A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/26178 |
Resumo: | We provide a numerical method to solve a certain class of fractional differential equations involving ψ -Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce ψ -shifted Legendre polynomial basis, and we derive an explicit formula for the ψ -fractional integral of ψ -shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments. |
id |
RCAP_459241b6904080f3fa4827e2d1ea05dd |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/26178 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivativeψ -Shiftedψ -Caputo fractional derivativeFractional relaxation–oscillation equationConvergenceWe provide a numerical method to solve a certain class of fractional differential equations involving ψ -Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce ψ -shifted Legendre polynomial basis, and we derive an explicit formula for the ψ -fractional integral of ψ -shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments.Springer2020-07-01T00:00:00Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26178eng1578-730310.1007/s13398-018-0590-0Almeida, RicardoJleli, MohamedSamet, Besseminfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:42Zoai:ria.ua.pt:10773/26178Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:14.335359Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
title |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
spellingShingle |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative Almeida, Ricardo ψ -Shifted ψ -Caputo fractional derivative Fractional relaxation–oscillation equation Convergence |
title_short |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
title_full |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
title_fullStr |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
title_full_unstemmed |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
title_sort |
A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo Jleli, Mohamed Samet, Bessem |
author_role |
author |
author2 |
Jleli, Mohamed Samet, Bessem |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo Jleli, Mohamed Samet, Bessem |
dc.subject.por.fl_str_mv |
ψ -Shifted ψ -Caputo fractional derivative Fractional relaxation–oscillation equation Convergence |
topic |
ψ -Shifted ψ -Caputo fractional derivative Fractional relaxation–oscillation equation Convergence |
description |
We provide a numerical method to solve a certain class of fractional differential equations involving ψ -Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce ψ -shifted Legendre polynomial basis, and we derive an explicit formula for the ψ -fractional integral of ψ -shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-01T00:00:00Z 2019-07 2020-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/26178 |
url |
http://hdl.handle.net/10773/26178 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1578-7303 10.1007/s13398-018-0590-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137646571683840 |