A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative

Detalhes bibliográficos
Autor(a) principal: Almeida, Ricardo
Data de Publicação: 2019
Outros Autores: Jleli, Mohamed, Samet, Bessem
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/26178
Resumo: We provide a numerical method to solve a certain class of fractional differential equations involving ψ -Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce ψ -shifted Legendre polynomial basis, and we derive an explicit formula for the ψ -fractional integral of ψ -shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments.
id RCAP_459241b6904080f3fa4827e2d1ea05dd
oai_identifier_str oai:ria.ua.pt:10773/26178
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivativeψ -Shiftedψ -Caputo fractional derivativeFractional relaxation–oscillation equationConvergenceWe provide a numerical method to solve a certain class of fractional differential equations involving ψ -Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce ψ -shifted Legendre polynomial basis, and we derive an explicit formula for the ψ -fractional integral of ψ -shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments.Springer2020-07-01T00:00:00Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26178eng1578-730310.1007/s13398-018-0590-0Almeida, RicardoJleli, MohamedSamet, Besseminfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:42Zoai:ria.ua.pt:10773/26178Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:14.335359Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
title A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
spellingShingle A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
Almeida, Ricardo
ψ -Shifted
ψ -Caputo fractional derivative
Fractional relaxation–oscillation equation
Convergence
title_short A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
title_full A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
title_fullStr A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
title_full_unstemmed A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
title_sort A numerical study of fractional relaxation–oscillation equations involving ψ-Caputo fractional derivative
author Almeida, Ricardo
author_facet Almeida, Ricardo
Jleli, Mohamed
Samet, Bessem
author_role author
author2 Jleli, Mohamed
Samet, Bessem
author2_role author
author
dc.contributor.author.fl_str_mv Almeida, Ricardo
Jleli, Mohamed
Samet, Bessem
dc.subject.por.fl_str_mv ψ -Shifted
ψ -Caputo fractional derivative
Fractional relaxation–oscillation equation
Convergence
topic ψ -Shifted
ψ -Caputo fractional derivative
Fractional relaxation–oscillation equation
Convergence
description We provide a numerical method to solve a certain class of fractional differential equations involving ψ -Caputo fractional derivative. The considered class includes as particular case fractional relaxation–oscillation equations. Our approach is based on operational matrix of fractional integration of a new type of orthogonal polynomials. More precisely, we introduce ψ -shifted Legendre polynomial basis, and we derive an explicit formula for the ψ -fractional integral of ψ -shifted Legendre polynomials. Next, via an orthogonal projection on this polynomial basis, the problem is reduced to an algebraic equation that can be easily solved. The convergence of the method is justified rigorously and confirmed by some numerical experiments.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01T00:00:00Z
2019-07
2020-07-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/26178
url http://hdl.handle.net/10773/26178
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1578-7303
10.1007/s13398-018-0590-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137646571683840