Control and management mechanisms in 5G networks: operator networks

Detalhes bibliográficos
Autor(a) principal: Ferreira, Diogo Daniel Soares
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29643
Resumo: In 5G networks, time-series data will be omnipresent for the monitoring of network metrics. With the increase in the number of Internet of Things (IoT) devices in the next years, it is expected that the number of real-time time-series data streams increases at a fast pace. To be able to monitor those streams, test and correlate different algorithms and metrics simultaneously and in a seamless way, time-series forecasting is becoming essential for the pro-active successful management of the network. The objective of this dissertation is to design, implement and test a prediction system in a communication network, that allows integrating various networks, such as a vehicular network and a 4G operator network, to improve the network reliability and Quality-of-Service (QoS). To do that, the dissertation has three main goals: (1) the analysis of different network datasets and implementation of different approaches to forecast network metrics, to test different techniques; (2) the design and implementation of a real-time distributed time-series forecasting architecture, to enable the network operator to make predictions about the network metrics; and lastly, (3) to use the forecasting models made previously and apply them to improve the network performance using resource management policies. The tests done with two different datasets, addressing the use cases of congestion management and resource splitting in a network with a limited number of resources, show that the network performance can be improved with proactive management made by a real-time system able to predict the network metrics and act on the network accordingly. It is also done a study about what network metrics can cause reduced accessibility in 4G networks, for the network operator to act more efficiently and pro-actively to avoid such events
id RCAP_45c16d416d5fa794623ee5ffd9c55dfa
oai_identifier_str oai:ria.ua.pt:10773/29643
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Control and management mechanisms in 5G networks: operator networksTime-series predictionForecasting5GNetwork MonitoringMachine LearningPrediction ArchitectureNetwork PoliciesNetwork SlicingIn 5G networks, time-series data will be omnipresent for the monitoring of network metrics. With the increase in the number of Internet of Things (IoT) devices in the next years, it is expected that the number of real-time time-series data streams increases at a fast pace. To be able to monitor those streams, test and correlate different algorithms and metrics simultaneously and in a seamless way, time-series forecasting is becoming essential for the pro-active successful management of the network. The objective of this dissertation is to design, implement and test a prediction system in a communication network, that allows integrating various networks, such as a vehicular network and a 4G operator network, to improve the network reliability and Quality-of-Service (QoS). To do that, the dissertation has three main goals: (1) the analysis of different network datasets and implementation of different approaches to forecast network metrics, to test different techniques; (2) the design and implementation of a real-time distributed time-series forecasting architecture, to enable the network operator to make predictions about the network metrics; and lastly, (3) to use the forecasting models made previously and apply them to improve the network performance using resource management policies. The tests done with two different datasets, addressing the use cases of congestion management and resource splitting in a network with a limited number of resources, show that the network performance can be improved with proactive management made by a real-time system able to predict the network metrics and act on the network accordingly. It is also done a study about what network metrics can cause reduced accessibility in 4G networks, for the network operator to act more efficiently and pro-actively to avoid such eventsEm redes 5G, séries temporais serão omnipresentes para a monitorização de métricas de rede. Com o aumento do número de dispositivos da Internet das Coisas (IoT) nos próximos anos, é esperado que o número de fluxos de séries temporais em tempo real cresça a um ritmo elevado. Para monitorizar esses fluxos, testar e correlacionar diferentes algoritmos e métricas simultaneamente e de maneira integrada, a previsão de séries temporais está a tornar-se essencial para a gestão preventiva bem sucedida da rede. O objetivo desta dissertação é desenhar, implementar e testar um sistema de previsão numa rede de comunicações, que permite integrar várias redes diferentes, como por exemplo uma rede veicular e uma rede 4G de operador, para melhorar a fiabilidade e a qualidade de serviço (QoS). Para isso, a dissertação tem três objetivos principais: (1) a análise de diferentes datasets de rede e subsequente implementação de diferentes abordagens para previsão de métricas de rede, para testar diferentes técnicas; (2) o desenho e implementação de uma arquitetura distribuída de previsão de séries temporais em tempo real, para permitir ao operador de rede efetuar previsões sobre as métricas de rede; e finalmente, (3) o uso de modelos de previsão criados anteriormente e sua aplicação para melhorar o desempenho da rede utilizando políticas de gestão de recursos. Os testes efetuados com dois datasets diferentes, endereçando os casos de uso de gestão de congestionamento e divisão de recursos numa rede com recursos limitados, mostram que o desempenho da rede pode ser melhorado com gestão preventiva da rede efetuada por um sistema em tempo real capaz de prever métricas de rede e atuar em conformidade na rede. Também é efetuado um estudo sobre que métricas de rede podem causar reduzida acessibilidade em redes 4G, para o operador de rede atuar mais eficazmente e proativamente para evitar tais acontecimentos.2020-10-30T09:32:08Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29643engFerreira, Diogo Daniel Soaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:57:23Zoai:ria.ua.pt:10773/29643Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:55.995015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Control and management mechanisms in 5G networks: operator networks
title Control and management mechanisms in 5G networks: operator networks
spellingShingle Control and management mechanisms in 5G networks: operator networks
Ferreira, Diogo Daniel Soares
Time-series prediction
Forecasting
5G
Network Monitoring
Machine Learning
Prediction Architecture
Network Policies
Network Slicing
title_short Control and management mechanisms in 5G networks: operator networks
title_full Control and management mechanisms in 5G networks: operator networks
title_fullStr Control and management mechanisms in 5G networks: operator networks
title_full_unstemmed Control and management mechanisms in 5G networks: operator networks
title_sort Control and management mechanisms in 5G networks: operator networks
author Ferreira, Diogo Daniel Soares
author_facet Ferreira, Diogo Daniel Soares
author_role author
dc.contributor.author.fl_str_mv Ferreira, Diogo Daniel Soares
dc.subject.por.fl_str_mv Time-series prediction
Forecasting
5G
Network Monitoring
Machine Learning
Prediction Architecture
Network Policies
Network Slicing
topic Time-series prediction
Forecasting
5G
Network Monitoring
Machine Learning
Prediction Architecture
Network Policies
Network Slicing
description In 5G networks, time-series data will be omnipresent for the monitoring of network metrics. With the increase in the number of Internet of Things (IoT) devices in the next years, it is expected that the number of real-time time-series data streams increases at a fast pace. To be able to monitor those streams, test and correlate different algorithms and metrics simultaneously and in a seamless way, time-series forecasting is becoming essential for the pro-active successful management of the network. The objective of this dissertation is to design, implement and test a prediction system in a communication network, that allows integrating various networks, such as a vehicular network and a 4G operator network, to improve the network reliability and Quality-of-Service (QoS). To do that, the dissertation has three main goals: (1) the analysis of different network datasets and implementation of different approaches to forecast network metrics, to test different techniques; (2) the design and implementation of a real-time distributed time-series forecasting architecture, to enable the network operator to make predictions about the network metrics; and lastly, (3) to use the forecasting models made previously and apply them to improve the network performance using resource management policies. The tests done with two different datasets, addressing the use cases of congestion management and resource splitting in a network with a limited number of resources, show that the network performance can be improved with proactive management made by a real-time system able to predict the network metrics and act on the network accordingly. It is also done a study about what network metrics can cause reduced accessibility in 4G networks, for the network operator to act more efficiently and pro-actively to avoid such events
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01T00:00:00Z
2019-07
2020-10-30T09:32:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29643
url http://hdl.handle.net/10773/29643
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137674746920960