Towards the expansion to the upcoming cities: a clustering approach for luggit
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/142637 |
Resumo: | Acknowledging the success of clustering techniques as decision support tools, this paper proposes the development of an enhanced K-means algorithm to resolve LUGGit’s problem of expansion. With the intent of identifying the cities that most accurately meet the company’s expectations, an extensive process of data collection, reflecting a wide-ranging market-study, was on the basis of the creation of the “Weighted K-means”, a clustering method capable of weighting the various attributes based on their relative significance to each member of the team, being adjustable to the present and the future needs of the company. |
id |
RCAP_45c5979f72241600ad4b670c34aedb02 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/142637 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Towards the expansion to the upcoming cities: a clustering approach for luggitData scienceBusiness analyticsData miningCluster analysisData-driven business decisionsSensitive analysisDomínio/Área Científica::Ciências Sociais::Economia e GestãoAcknowledging the success of clustering techniques as decision support tools, this paper proposes the development of an enhanced K-means algorithm to resolve LUGGit’s problem of expansion. With the intent of identifying the cities that most accurately meet the company’s expectations, an extensive process of data collection, reflecting a wide-ranging market-study, was on the basis of the creation of the “Weighted K-means”, a clustering method capable of weighting the various attributes based on their relative significance to each member of the team, being adjustable to the present and the future needs of the company.Han, QiweiFigueiredo, RicardoRUNFreches, Rita De Almeida2022-07-29T10:58:11Z2022-01-202021-12-172022-01-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/142637TID:203022181enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:20:29Zoai:run.unl.pt:10362/142637Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:26.835558Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
title |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
spellingShingle |
Towards the expansion to the upcoming cities: a clustering approach for luggit Freches, Rita De Almeida Data science Business analytics Data mining Cluster analysis Data-driven business decisions Sensitive analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
title_full |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
title_fullStr |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
title_full_unstemmed |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
title_sort |
Towards the expansion to the upcoming cities: a clustering approach for luggit |
author |
Freches, Rita De Almeida |
author_facet |
Freches, Rita De Almeida |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei Figueiredo, Ricardo RUN |
dc.contributor.author.fl_str_mv |
Freches, Rita De Almeida |
dc.subject.por.fl_str_mv |
Data science Business analytics Data mining Cluster analysis Data-driven business decisions Sensitive analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Data science Business analytics Data mining Cluster analysis Data-driven business decisions Sensitive analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
Acknowledging the success of clustering techniques as decision support tools, this paper proposes the development of an enhanced K-means algorithm to resolve LUGGit’s problem of expansion. With the intent of identifying the cities that most accurately meet the company’s expectations, an extensive process of data collection, reflecting a wide-ranging market-study, was on the basis of the creation of the “Weighted K-means”, a clustering method capable of weighting the various attributes based on their relative significance to each member of the team, being adjustable to the present and the future needs of the company. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17 2022-07-29T10:58:11Z 2022-01-20 2022-01-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/142637 TID:203022181 |
url |
http://hdl.handle.net/10362/142637 |
identifier_str_mv |
TID:203022181 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138101245771776 |