Towards the expansion to the upcoming cities: a clustering approach for luggit

Detalhes bibliográficos
Autor(a) principal: Freches, Rita De Almeida
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/142637
Resumo: Acknowledging the success of clustering techniques as decision support tools, this paper proposes the development of an enhanced K-means algorithm to resolve LUGGit’s problem of expansion. With the intent of identifying the cities that most accurately meet the company’s expectations, an extensive process of data collection, reflecting a wide-ranging market-study, was on the basis of the creation of the “Weighted K-means”, a clustering method capable of weighting the various attributes based on their relative significance to each member of the team, being adjustable to the present and the future needs of the company.
id RCAP_45c5979f72241600ad4b670c34aedb02
oai_identifier_str oai:run.unl.pt:10362/142637
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Towards the expansion to the upcoming cities: a clustering approach for luggitData scienceBusiness analyticsData miningCluster analysisData-driven business decisionsSensitive analysisDomínio/Área Científica::Ciências Sociais::Economia e GestãoAcknowledging the success of clustering techniques as decision support tools, this paper proposes the development of an enhanced K-means algorithm to resolve LUGGit’s problem of expansion. With the intent of identifying the cities that most accurately meet the company’s expectations, an extensive process of data collection, reflecting a wide-ranging market-study, was on the basis of the creation of the “Weighted K-means”, a clustering method capable of weighting the various attributes based on their relative significance to each member of the team, being adjustable to the present and the future needs of the company.Han, QiweiFigueiredo, RicardoRUNFreches, Rita De Almeida2022-07-29T10:58:11Z2022-01-202021-12-172022-01-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/142637TID:203022181enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:20:29Zoai:run.unl.pt:10362/142637Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:26.835558Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Towards the expansion to the upcoming cities: a clustering approach for luggit
title Towards the expansion to the upcoming cities: a clustering approach for luggit
spellingShingle Towards the expansion to the upcoming cities: a clustering approach for luggit
Freches, Rita De Almeida
Data science
Business analytics
Data mining
Cluster analysis
Data-driven business decisions
Sensitive analysis
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Towards the expansion to the upcoming cities: a clustering approach for luggit
title_full Towards the expansion to the upcoming cities: a clustering approach for luggit
title_fullStr Towards the expansion to the upcoming cities: a clustering approach for luggit
title_full_unstemmed Towards the expansion to the upcoming cities: a clustering approach for luggit
title_sort Towards the expansion to the upcoming cities: a clustering approach for luggit
author Freches, Rita De Almeida
author_facet Freches, Rita De Almeida
author_role author
dc.contributor.none.fl_str_mv Han, Qiwei
Figueiredo, Ricardo
RUN
dc.contributor.author.fl_str_mv Freches, Rita De Almeida
dc.subject.por.fl_str_mv Data science
Business analytics
Data mining
Cluster analysis
Data-driven business decisions
Sensitive analysis
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Data science
Business analytics
Data mining
Cluster analysis
Data-driven business decisions
Sensitive analysis
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description Acknowledging the success of clustering techniques as decision support tools, this paper proposes the development of an enhanced K-means algorithm to resolve LUGGit’s problem of expansion. With the intent of identifying the cities that most accurately meet the company’s expectations, an extensive process of data collection, reflecting a wide-ranging market-study, was on the basis of the creation of the “Weighted K-means”, a clustering method capable of weighting the various attributes based on their relative significance to each member of the team, being adjustable to the present and the future needs of the company.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-17
2022-07-29T10:58:11Z
2022-01-20
2022-01-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/142637
TID:203022181
url http://hdl.handle.net/10362/142637
identifier_str_mv TID:203022181
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138101245771776