Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues

Detalhes bibliográficos
Autor(a) principal: Martins, Rute
Data de Publicação: 2011
Outros Autores: Silva, Bruno, Proença, Daniela, Faustino, Paula
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.18/99
Resumo: Background - The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Methodology/Principal Findings - Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. Conclusions/Significance - HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.
id RCAP_45eb37db52f35e040393937213f4250d
oai_identifier_str oai:repositorio.insa.pt:10400.18/99
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Differential HFE Gene Expression is Regulated by Alternative Splicing in Human TissuesDoenças GenéticasGenéticaBackground - The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Methodology/Principal Findings - Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. Conclusions/Significance - HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT; grant PTDC/SAU/GMG/64494/2006) and Programa de Financiamento Plurianual do CIGMH. RM and BS were supported by FCT fellowships (SFRH/BD/21340/2005 and SFRH/BD/60718/2009).Juan Valcarcel, Centre de Regulació Genómica, SpainRepositório Científico do Instituto Nacional de SaúdeMartins, RuteSilva, BrunoProença, DanielaFaustino, Paula2011-06-01T16:01:38Z2011-03-032011-03-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.18/99engPLoS One. 2011 Mar 3;6(3):e17542eISSN-1932-6203info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-20T15:38:00Zoai:repositorio.insa.pt:10400.18/99Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:35:17.969567Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
title Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
spellingShingle Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
Martins, Rute
Doenças Genéticas
Genética
title_short Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
title_full Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
title_fullStr Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
title_full_unstemmed Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
title_sort Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues
author Martins, Rute
author_facet Martins, Rute
Silva, Bruno
Proença, Daniela
Faustino, Paula
author_role author
author2 Silva, Bruno
Proença, Daniela
Faustino, Paula
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Martins, Rute
Silva, Bruno
Proença, Daniela
Faustino, Paula
dc.subject.por.fl_str_mv Doenças Genéticas
Genética
topic Doenças Genéticas
Genética
description Background - The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Methodology/Principal Findings - Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. Conclusions/Significance - HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.
publishDate 2011
dc.date.none.fl_str_mv 2011-06-01T16:01:38Z
2011-03-03
2011-03-03T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/99
url http://hdl.handle.net/10400.18/99
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv PLoS One. 2011 Mar 3;6(3):e17542
eISSN-1932-6203
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Juan Valcarcel, Centre de Regulació Genómica, Spain
publisher.none.fl_str_mv Juan Valcarcel, Centre de Regulació Genómica, Spain
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132078750564352