Bivariate binomial autoregressive models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/36976 |
Resumo: | This paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven. |
id |
RCAP_4867fb3ae4fb63fd00458e53a44552ea |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/36976 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Bivariate binomial autoregressive modelsBivariate binomial distributionBinomial AR(1) modelINAR(1) modelINGARCH modelThinning operationThis paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven.Elsevier2023-04-13T09:31:49Z2014-03-01T00:00:00Z2014-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36976eng0047-259X10.1016/j.jmva.2013.12.014Scotto, Manuel G.Weiss, Christian H.Silva, Maria EduardaPereira, Isabelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:11:19Zoai:ria.ua.pt:10773/36976Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:39.393517Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Bivariate binomial autoregressive models |
title |
Bivariate binomial autoregressive models |
spellingShingle |
Bivariate binomial autoregressive models Scotto, Manuel G. Bivariate binomial distribution Binomial AR(1) model INAR(1) model INGARCH model Thinning operation |
title_short |
Bivariate binomial autoregressive models |
title_full |
Bivariate binomial autoregressive models |
title_fullStr |
Bivariate binomial autoregressive models |
title_full_unstemmed |
Bivariate binomial autoregressive models |
title_sort |
Bivariate binomial autoregressive models |
author |
Scotto, Manuel G. |
author_facet |
Scotto, Manuel G. Weiss, Christian H. Silva, Maria Eduarda Pereira, Isabel |
author_role |
author |
author2 |
Weiss, Christian H. Silva, Maria Eduarda Pereira, Isabel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Scotto, Manuel G. Weiss, Christian H. Silva, Maria Eduarda Pereira, Isabel |
dc.subject.por.fl_str_mv |
Bivariate binomial distribution Binomial AR(1) model INAR(1) model INGARCH model Thinning operation |
topic |
Bivariate binomial distribution Binomial AR(1) model INAR(1) model INGARCH model Thinning operation |
description |
This paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03-01T00:00:00Z 2014-03 2023-04-13T09:31:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/36976 |
url |
http://hdl.handle.net/10773/36976 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0047-259X 10.1016/j.jmva.2013.12.014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137731142483968 |