Bivariate binomial autoregressive models

Detalhes bibliográficos
Autor(a) principal: Scotto, Manuel G.
Data de Publicação: 2014
Outros Autores: Weiss, Christian H., Silva, Maria Eduarda, Pereira, Isabel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36976
Resumo: This paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven.
id RCAP_4867fb3ae4fb63fd00458e53a44552ea
oai_identifier_str oai:ria.ua.pt:10773/36976
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bivariate binomial autoregressive modelsBivariate binomial distributionBinomial AR(1) modelINAR(1) modelINGARCH modelThinning operationThis paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven.Elsevier2023-04-13T09:31:49Z2014-03-01T00:00:00Z2014-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36976eng0047-259X10.1016/j.jmva.2013.12.014Scotto, Manuel G.Weiss, Christian H.Silva, Maria EduardaPereira, Isabelinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:11:19Zoai:ria.ua.pt:10773/36976Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:39.393517Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bivariate binomial autoregressive models
title Bivariate binomial autoregressive models
spellingShingle Bivariate binomial autoregressive models
Scotto, Manuel G.
Bivariate binomial distribution
Binomial AR(1) model
INAR(1) model
INGARCH model
Thinning operation
title_short Bivariate binomial autoregressive models
title_full Bivariate binomial autoregressive models
title_fullStr Bivariate binomial autoregressive models
title_full_unstemmed Bivariate binomial autoregressive models
title_sort Bivariate binomial autoregressive models
author Scotto, Manuel G.
author_facet Scotto, Manuel G.
Weiss, Christian H.
Silva, Maria Eduarda
Pereira, Isabel
author_role author
author2 Weiss, Christian H.
Silva, Maria Eduarda
Pereira, Isabel
author2_role author
author
author
dc.contributor.author.fl_str_mv Scotto, Manuel G.
Weiss, Christian H.
Silva, Maria Eduarda
Pereira, Isabel
dc.subject.por.fl_str_mv Bivariate binomial distribution
Binomial AR(1) model
INAR(1) model
INGARCH model
Thinning operation
topic Bivariate binomial distribution
Binomial AR(1) model
INAR(1) model
INGARCH model
Thinning operation
description This paper introduces new classes of bivariate time series models being useful to fit count data time series with a finite range of counts. Motivation comes mainly from the comparison of schemes for monitoring tourism demand, stock data, production and environmental processes. All models are based on the bivariate binomial distribution of Type II. First, a new family of bivariate integer-valued GARCH models is proposed. Then, a new bivariate thinning operation is introduced and explained in detail. The new thinning operation has a number of advantages including the fact that marginally it behaves as the usual binomial thinning operation and also that allows for both positive and negative cross-correlations. Based upon this new thinning operation, a bivariate extension of the binomial autoregressive model of order one is introduced. Basic probabilistic and statistical properties of the model are discussed. Parameter estimation and forecasting are also covered. The performance of these models is illustrated through an empirical application to a set of rainy days time series collected from 2000 up to 2010 in the German cities of Bremen and Cuxhaven.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-01T00:00:00Z
2014-03
2023-04-13T09:31:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36976
url http://hdl.handle.net/10773/36976
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0047-259X
10.1016/j.jmva.2013.12.014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137731142483968