An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/49725 |
Resumo: | We present a novel first-order nonnegative integer-valued autoregressive model for stationary count data processes with Bernoulli-geometric marginals based on a new type of generalized thinning operator. It can be used for modeling time series of counts with equidispersion, underdispersion and overdispersion. The main properties of the model are derived, such as probability generating function, moments, transition probabilities and zero probability. The maximum likelihood method is used for estimating the model parameters. The proposed model is fitted to time series of counts of iceberg orders and of cases of family violence illustrating its capabilities in challenging cases of overdispersed and equidispersed count data. |
id |
UFRN_2ddbba5141c08e52dbd2d0050b433a81 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/49725 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Bourguignon, MarceloWeiss, Christian H.2022-11-10T19:35:33Z2022-11-10T19:35:33Z2017-04BOURGUIGNON, Marcelo; WEISS, C. H. . An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion. Test, v. 26, p. 847-868, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs11749-017-0536-4. Acesso em: 07 dez. 2017https://repositorio.ufrn.br/handle/123456789/4972510.1007/s11749-017-0536-4SpringerINAR(1) processBernoulli distributionGeometric distributionInteger-valued time seriesBinomial thinningNegative binomial thinningAn INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleWe present a novel first-order nonnegative integer-valued autoregressive model for stationary count data processes with Bernoulli-geometric marginals based on a new type of generalized thinning operator. It can be used for modeling time series of counts with equidispersion, underdispersion and overdispersion. The main properties of the model are derived, such as probability generating function, moments, transition probabilities and zero probability. The maximum likelihood method is used for estimating the model parameters. The proposed model is fitted to time series of counts of iceberg orders and of cases of family violence illustrating its capabilities in challenging cases of overdispersed and equidispersed count data.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNORIGINALAnINAR(1)process_2017.pdfAnINAR(1)process_2017.pdfapplication/pdf734390https://repositorio.ufrn.br/bitstream/123456789/49725/1/AnINAR%281%29process_2017.pdf83655b831b33c13ed3532c97b859a44cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49725/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/497252022-11-10 16:57:52.171oai:https://repositorio.ufrn.br:123456789/49725Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-10T19:57:52Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
title |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
spellingShingle |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion Bourguignon, Marcelo INAR(1) process Bernoulli distribution Geometric distribution Integer-valued time series Binomial thinning Negative binomial thinning |
title_short |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
title_full |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
title_fullStr |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
title_full_unstemmed |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
title_sort |
An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion |
author |
Bourguignon, Marcelo |
author_facet |
Bourguignon, Marcelo Weiss, Christian H. |
author_role |
author |
author2 |
Weiss, Christian H. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bourguignon, Marcelo Weiss, Christian H. |
dc.subject.por.fl_str_mv |
INAR(1) process Bernoulli distribution Geometric distribution Integer-valued time series Binomial thinning Negative binomial thinning |
topic |
INAR(1) process Bernoulli distribution Geometric distribution Integer-valued time series Binomial thinning Negative binomial thinning |
description |
We present a novel first-order nonnegative integer-valued autoregressive model for stationary count data processes with Bernoulli-geometric marginals based on a new type of generalized thinning operator. It can be used for modeling time series of counts with equidispersion, underdispersion and overdispersion. The main properties of the model are derived, such as probability generating function, moments, transition probabilities and zero probability. The maximum likelihood method is used for estimating the model parameters. The proposed model is fitted to time series of counts of iceberg orders and of cases of family violence illustrating its capabilities in challenging cases of overdispersed and equidispersed count data. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-04 |
dc.date.accessioned.fl_str_mv |
2022-11-10T19:35:33Z |
dc.date.available.fl_str_mv |
2022-11-10T19:35:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BOURGUIGNON, Marcelo; WEISS, C. H. . An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion. Test, v. 26, p. 847-868, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs11749-017-0536-4. Acesso em: 07 dez. 2017 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/49725 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11749-017-0536-4 |
identifier_str_mv |
BOURGUIGNON, Marcelo; WEISS, C. H. . An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion. Test, v. 26, p. 847-868, 2017. Disponível em: https://link.springer.com/article/10.1007%2Fs11749-017-0536-4. Acesso em: 07 dez. 2017 10.1007/s11749-017-0536-4 |
url |
https://repositorio.ufrn.br/handle/123456789/49725 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/49725/1/AnINAR%281%29process_2017.pdf https://repositorio.ufrn.br/bitstream/123456789/49725/2/license.txt |
bitstream.checksum.fl_str_mv |
83655b831b33c13ed3532c97b859a44c 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832869138235392 |