Semi-automatic labelling and tracking of targets for autonomous driving

Detalhes bibliográficos
Autor(a) principal: Silva, Nuno Miguel Soares
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/25902
Resumo: In the scope of the ATLASCAR2 project, this dissertation is based on the development (using ROS) of a driving assistance system that implements an interface to detect, track and label targets on the road. The detection and tracking are done using LIDAR sensor data and a camera. Firstly, an algorithm is implemented to be used in the camera based on the appearance of the target to be tracked. Next, a range based algorithm is developed using the data acquired from the sensors to follow objects in a tridimensional space. Finally, because it is possible to detect and track objects using the image and the lasers, the combination of the algorithms is done by projecting what is captured from the sensors in the camera image, being possible to obtain a more accurate and robust tracking. To evaluate the algorithm some datasets were used with the labelled data from the several detected and followed objects. To perform this work the sensors and the camera need to be properly calibrated. To do this, the calibration between the several devices was done using an application that, by passing a ball in front of the sensors, the position values of each sensor relatively to a given reference device are found. Within the calibration, this dissertation also includes an improvement of the ball detection algorithm in the image obtained by the camera.
id RCAP_486d1be0a2a6b96f94304732c776212f
oai_identifier_str oai:ria.ua.pt:10773/25902
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Semi-automatic labelling and tracking of targets for autonomous drivingAutonomous drivingAutonomous vehiclesATLASCARData ClusteringCalibrationData LabellingObject DetectionData FusionADASLIDARImage ProcessingIn the scope of the ATLASCAR2 project, this dissertation is based on the development (using ROS) of a driving assistance system that implements an interface to detect, track and label targets on the road. The detection and tracking are done using LIDAR sensor data and a camera. Firstly, an algorithm is implemented to be used in the camera based on the appearance of the target to be tracked. Next, a range based algorithm is developed using the data acquired from the sensors to follow objects in a tridimensional space. Finally, because it is possible to detect and track objects using the image and the lasers, the combination of the algorithms is done by projecting what is captured from the sensors in the camera image, being possible to obtain a more accurate and robust tracking. To evaluate the algorithm some datasets were used with the labelled data from the several detected and followed objects. To perform this work the sensors and the camera need to be properly calibrated. To do this, the calibration between the several devices was done using an application that, by passing a ball in front of the sensors, the position values of each sensor relatively to a given reference device are found. Within the calibration, this dissertation also includes an improvement of the ball detection algorithm in the image obtained by the camera.No âmbito do projeto do ATLASCAR2, esta dissertação baseia-se no desenvolvimento (usando Robot Operating System (ROS)) de um sistema de assistência à condução que implementa uma interface para deteção, seguimento e anotação de alvos na estrada. A deteção e o seguimento são feitos a partir de dados de sensores Light Detection And Ranging (LIDAR) e de uma câmara. Numa primeira fase é implementado um algoritmo para ser usado na câmara baseado na aparência do alvo a ser seguido. Seguidamente, é desenvolvido um algoritmo baseado no alcance usando dados adquiridos nos sensores para seguir objetos num espaço tridimensional. Finalmente, como é possível detetar e seguir objetos usando a imagem e os lasers, a combinação dos algoritmos é feita projetando o que é capturado pelos sensores na imagem da câmara, sendo possível obter um seguimento mais preciso e robusto dos alvos na estrada. Para avaliar o algoritmo alguns ”datasets” foram usados com a anotação dos vários alvos detetados e seguidos. Para efetuar este trabalho é necessário que os sensores e a câmara estejam devidamente calibrados. Para este efeito, a calibração entre os vários dispositivos é feita através de uma aplicação que, ao passar uma bola em frente dos sensores, é possível descobrir os valores das posições de cada sensor relativamente a um dispositivo dado como referência. Ao nível da calibração, esta dissertação inclui também uma melhoria do algoritmo de deteção da bola na imagem obtida pela câmara.2019-05-03T15:08:14Z2018-01-01T00:00:00Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/25902TID:202233952engSilva, Nuno Miguel Soaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:11Zoai:ria.ua.pt:10773/25902Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:02.611065Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Semi-automatic labelling and tracking of targets for autonomous driving
title Semi-automatic labelling and tracking of targets for autonomous driving
spellingShingle Semi-automatic labelling and tracking of targets for autonomous driving
Silva, Nuno Miguel Soares
Autonomous driving
Autonomous vehicles
ATLASCAR
Data Clustering
Calibration
Data Labelling
Object Detection
Data Fusion
ADAS
LIDAR
Image Processing
title_short Semi-automatic labelling and tracking of targets for autonomous driving
title_full Semi-automatic labelling and tracking of targets for autonomous driving
title_fullStr Semi-automatic labelling and tracking of targets for autonomous driving
title_full_unstemmed Semi-automatic labelling and tracking of targets for autonomous driving
title_sort Semi-automatic labelling and tracking of targets for autonomous driving
author Silva, Nuno Miguel Soares
author_facet Silva, Nuno Miguel Soares
author_role author
dc.contributor.author.fl_str_mv Silva, Nuno Miguel Soares
dc.subject.por.fl_str_mv Autonomous driving
Autonomous vehicles
ATLASCAR
Data Clustering
Calibration
Data Labelling
Object Detection
Data Fusion
ADAS
LIDAR
Image Processing
topic Autonomous driving
Autonomous vehicles
ATLASCAR
Data Clustering
Calibration
Data Labelling
Object Detection
Data Fusion
ADAS
LIDAR
Image Processing
description In the scope of the ATLASCAR2 project, this dissertation is based on the development (using ROS) of a driving assistance system that implements an interface to detect, track and label targets on the road. The detection and tracking are done using LIDAR sensor data and a camera. Firstly, an algorithm is implemented to be used in the camera based on the appearance of the target to be tracked. Next, a range based algorithm is developed using the data acquired from the sensors to follow objects in a tridimensional space. Finally, because it is possible to detect and track objects using the image and the lasers, the combination of the algorithms is done by projecting what is captured from the sensors in the camera image, being possible to obtain a more accurate and robust tracking. To evaluate the algorithm some datasets were used with the labelled data from the several detected and followed objects. To perform this work the sensors and the camera need to be properly calibrated. To do this, the calibration between the several devices was done using an application that, by passing a ball in front of the sensors, the position values of each sensor relatively to a given reference device are found. Within the calibration, this dissertation also includes an improvement of the ball detection algorithm in the image obtained by the camera.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01T00:00:00Z
2018
2019-05-03T15:08:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25902
TID:202233952
url http://hdl.handle.net/10773/25902
identifier_str_mv TID:202233952
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137644684247040