Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles

Detalhes bibliográficos
Autor(a) principal: Santos, Xavier Pinto
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/34129
Resumo: Traffic accidents are one of most common causes of unnatural death in the world. Emerging new technologies have been improving the safety of the vehicles and reducing the mortality rate on crashes. The automation of the driving task will eventually remove human error from the equation and reduce this number even further. Automating the task of driving requires that vehicles observe their surroundings. Such a task is done by vision sensors, of which LiDAR plays a key role. LiDARs produce high-definition point clouds, which are subsequently used for detecting objects. To this function is given the name of 3D Object Detection in the field of Computer Vision. Most Object Detection models nowadays are based on Deep Learning algorithms, which require massive amounts of data to be trained. The retrieval of this data is not a trivial task. Cars must be equipped with an array of sensors and driven around different scenarios for hours on end. The retrieved data then needs to be painstakingly annotated by humans. Being such an expensive and time demanding process to gather a dataset, one should make sure to fully harness the information contained in each sample. Such can be done through Data Augmentation. The process of Data Augmentation contributes significantly for the improvement of the performance gains, being actually more relevant than the advances in the object detection models themselves. This work reports the first-ever detailed quantification of the impact that the inclusion of augmented samples in a dataset has in 3D Object Detection in the context of autonomous driving. Only well established tools were used in order to enable a direct comparison with state of the art results. Such tools include the KITTI dataset, the PointPillars 3D Object Detection model, the metric of Average Precision, and proven Data Augmentation strategies. The obtained results confirm that suitably augmenting data significantly improves the Average Precision in detecting objects in 3D.
id RCAP_648b51f13ae845a7cc79d0041669b24f
oai_identifier_str oai:ria.ua.pt:10773/34129
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Evaluation of data augmentation techniques in 3D object detection for self-driving vehiclesAutonomous drivingData augmentationComputer visionLiDAR sensorsPoint cloud3D object detection deep learningMachine learningKITTIPointPillarsTraffic accidents are one of most common causes of unnatural death in the world. Emerging new technologies have been improving the safety of the vehicles and reducing the mortality rate on crashes. The automation of the driving task will eventually remove human error from the equation and reduce this number even further. Automating the task of driving requires that vehicles observe their surroundings. Such a task is done by vision sensors, of which LiDAR plays a key role. LiDARs produce high-definition point clouds, which are subsequently used for detecting objects. To this function is given the name of 3D Object Detection in the field of Computer Vision. Most Object Detection models nowadays are based on Deep Learning algorithms, which require massive amounts of data to be trained. The retrieval of this data is not a trivial task. Cars must be equipped with an array of sensors and driven around different scenarios for hours on end. The retrieved data then needs to be painstakingly annotated by humans. Being such an expensive and time demanding process to gather a dataset, one should make sure to fully harness the information contained in each sample. Such can be done through Data Augmentation. The process of Data Augmentation contributes significantly for the improvement of the performance gains, being actually more relevant than the advances in the object detection models themselves. This work reports the first-ever detailed quantification of the impact that the inclusion of augmented samples in a dataset has in 3D Object Detection in the context of autonomous driving. Only well established tools were used in order to enable a direct comparison with state of the art results. Such tools include the KITTI dataset, the PointPillars 3D Object Detection model, the metric of Average Precision, and proven Data Augmentation strategies. The obtained results confirm that suitably augmenting data significantly improves the Average Precision in detecting objects in 3D.Uma das causas de morte não-natural mais comuns em todo o mundo são os acidentes de viação. As condições de segurança dos veículos têm vindo a melhorar e a taxa de mortalidade em acidentes a diminuir devido às novas tecnologias emergentes. A automação da tarefa de conduzir irá eventualmente remover o erro humano da equação e reduzir ainda mais este número. Automatizar a tarefa de conduzir requer que os veículos sejam capazes de observar o ambiente em redor. Esta tarefa é levada a cabo por sensores de visão, dos quais o LiDAR desempenha um papel chave. Os LiDARs produzem nuvens de pontos de alta-definição, que são subsequentemente usadas para detetar objetos. A esta função dá-se o nome de Deteção de Objetos em 3D no campo da Visão por Computador. Grande parte dos modelos de Deteção de Objetos são atualmente baseados em algoritmos de Aprendizagem Profunda, que requerem quantidades massivas de dados para serem treinados. Obter estes dados não é uma tarefa trivial. É necessária uma frota de carros, equipados com um conjunto de sensores, e conduzidos por diferentes cenários durante várias horas. Os dados recolhidos precisam depois de ser anotados de forma manual, o que se revela uma tarefa fastidiosa. Sendo um processo tão caro e moroso, deve-se ter a certeza que se tira o máximo partido da informação contida em cada amostra. Tal pode ser feito através do Aumento de Dados. O processo de Aumento de Dados contribui significativamente para o aumento do desempenho, sendo, na verdade, mais relevante do que os avanços tecnológicos feitos na arquitetura dos modelos de Deteção de Objetos. Este trabalho apresenta pela primeira vez uma quantificação detalhada do impacto que a inclusão de amostras aumentadas num conjunto de dados tem na Deteção de Objetos em 3D num contexto de condução autónoma. Foram usadas exclusivamente ferramentas devidamente maduras, por forma a permitir uma comparação direta dos resultados obtidos com o estado da arte. Tais ferramentas incluem o conjunto de dados KITTI, o modelo de Deteção de Objetos PointPillars, a métrica de Precisão Média, e estratégias de Aumento de Dados consolidadas. Os resultados obtidos confirmam que um aumento adequado dos dados melhora significativamente a Precisão Média na deteção de objetos em 3D.2026-12-20T00:00:00Z2021-12-15T00:00:00Z2021-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/34129engSantos, Xavier Pintoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:05:47Zoai:ria.ua.pt:10773/34129Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:05:28.552478Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
title Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
spellingShingle Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
Santos, Xavier Pinto
Autonomous driving
Data augmentation
Computer vision
LiDAR sensors
Point cloud
3D object detection deep learning
Machine learning
KITTI
PointPillars
title_short Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
title_full Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
title_fullStr Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
title_full_unstemmed Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
title_sort Evaluation of data augmentation techniques in 3D object detection for self-driving vehicles
author Santos, Xavier Pinto
author_facet Santos, Xavier Pinto
author_role author
dc.contributor.author.fl_str_mv Santos, Xavier Pinto
dc.subject.por.fl_str_mv Autonomous driving
Data augmentation
Computer vision
LiDAR sensors
Point cloud
3D object detection deep learning
Machine learning
KITTI
PointPillars
topic Autonomous driving
Data augmentation
Computer vision
LiDAR sensors
Point cloud
3D object detection deep learning
Machine learning
KITTI
PointPillars
description Traffic accidents are one of most common causes of unnatural death in the world. Emerging new technologies have been improving the safety of the vehicles and reducing the mortality rate on crashes. The automation of the driving task will eventually remove human error from the equation and reduce this number even further. Automating the task of driving requires that vehicles observe their surroundings. Such a task is done by vision sensors, of which LiDAR plays a key role. LiDARs produce high-definition point clouds, which are subsequently used for detecting objects. To this function is given the name of 3D Object Detection in the field of Computer Vision. Most Object Detection models nowadays are based on Deep Learning algorithms, which require massive amounts of data to be trained. The retrieval of this data is not a trivial task. Cars must be equipped with an array of sensors and driven around different scenarios for hours on end. The retrieved data then needs to be painstakingly annotated by humans. Being such an expensive and time demanding process to gather a dataset, one should make sure to fully harness the information contained in each sample. Such can be done through Data Augmentation. The process of Data Augmentation contributes significantly for the improvement of the performance gains, being actually more relevant than the advances in the object detection models themselves. This work reports the first-ever detailed quantification of the impact that the inclusion of augmented samples in a dataset has in 3D Object Detection in the context of autonomous driving. Only well established tools were used in order to enable a direct comparison with state of the art results. Such tools include the KITTI dataset, the PointPillars 3D Object Detection model, the metric of Average Precision, and proven Data Augmentation strategies. The obtained results confirm that suitably augmenting data significantly improves the Average Precision in detecting objects in 3D.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15T00:00:00Z
2021-12-15
2026-12-20T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34129
url http://hdl.handle.net/10773/34129
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137709528186880