A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , , , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/23883 |
Resumo: | In this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds. |
id |
RCAP_48cb8b76910576fc97c1613c9de14918 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/23883 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolisSupervised classification techniquesEvolutionary algorithmsRandom forestPLS-DAWrapper methodsNMR-based metabolomicsScience & TechnologyIn this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds.The work is partially funded by ERDF -European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within projects ref. COMPETE FCOMP-01-0124-FEDER-015079 and PEstOE/ EEI/UI0752/2011. RC's work is funded by a PhD grant from the Portuguese FCT ( ref. SFRH/BD/66201/2009).Springer VerlagSpringer VerlagUniversidade do MinhoMaraschin, MarceloSomensi-Zeggio, A.Oliveira, S. K.Kuhnen, S.Tomazzoli, M. M.Zeri, A. C. M.Carreira, RafaelRocha, Miguel20122012-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/23883eng97836423412290302-974310.1007/978-3-642-34123-6_12info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:11:58Zoai:repositorium.sdum.uminho.pt:1822/23883Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:11:58Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
title |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
spellingShingle |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis Maraschin, Marcelo Supervised classification techniques Evolutionary algorithms Random forest PLS-DA Wrapper methods NMR-based metabolomics Science & Technology |
title_short |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
title_full |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
title_fullStr |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
title_full_unstemmed |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
title_sort |
A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis |
author |
Maraschin, Marcelo |
author_facet |
Maraschin, Marcelo Somensi-Zeggio, A. Oliveira, S. K. Kuhnen, S. Tomazzoli, M. M. Zeri, A. C. M. Carreira, Rafael Rocha, Miguel |
author_role |
author |
author2 |
Somensi-Zeggio, A. Oliveira, S. K. Kuhnen, S. Tomazzoli, M. M. Zeri, A. C. M. Carreira, Rafael Rocha, Miguel |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Maraschin, Marcelo Somensi-Zeggio, A. Oliveira, S. K. Kuhnen, S. Tomazzoli, M. M. Zeri, A. C. M. Carreira, Rafael Rocha, Miguel |
dc.subject.por.fl_str_mv |
Supervised classification techniques Evolutionary algorithms Random forest PLS-DA Wrapper methods NMR-based metabolomics Science & Technology |
topic |
Supervised classification techniques Evolutionary algorithms Random forest PLS-DA Wrapper methods NMR-based metabolomics Science & Technology |
description |
In this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/23883 |
url |
http://hdl.handle.net/1822/23883 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
9783642341229 0302-9743 10.1007/978-3-642-34123-6_12 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544547286122496 |