A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis

Detalhes bibliográficos
Autor(a) principal: Maraschin, Marcelo
Data de Publicação: 2012
Outros Autores: Somensi-Zeggio, A., Oliveira, S. K., Kuhnen, S., Tomazzoli, M. M., Zeri, A. C. M., Carreira, Rafael, Rocha, Miguel
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/23883
Resumo: In this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds.
id RCAP_48cb8b76910576fc97c1613c9de14918
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/23883
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolisSupervised classification techniquesEvolutionary algorithmsRandom forestPLS-DAWrapper methodsNMR-based metabolomicsScience & TechnologyIn this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds.The work is partially funded by ERDF -European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within projects ref. COMPETE FCOMP-01-0124-FEDER-015079 and PEstOE/ EEI/UI0752/2011. RC's work is funded by a PhD grant from the Portuguese FCT ( ref. SFRH/BD/66201/2009).Springer VerlagSpringer VerlagUniversidade do MinhoMaraschin, MarceloSomensi-Zeggio, A.Oliveira, S. K.Kuhnen, S.Tomazzoli, M. M.Zeri, A. C. M.Carreira, RafaelRocha, Miguel20122012-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/23883eng97836423412290302-974310.1007/978-3-642-34123-6_12info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:11:58Zoai:repositorium.sdum.uminho.pt:1822/23883Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:11:58Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
title A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
spellingShingle A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
Maraschin, Marcelo
Supervised classification techniques
Evolutionary algorithms
Random forest
PLS-DA
Wrapper methods
NMR-based metabolomics
Science & Technology
title_short A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
title_full A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
title_fullStr A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
title_full_unstemmed A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
title_sort A machine learning and chemometrics assisted interpretation of spectroscopic data: a NMR-based metabolomics platform for the assessment of Brazilian propolis
author Maraschin, Marcelo
author_facet Maraschin, Marcelo
Somensi-Zeggio, A.
Oliveira, S. K.
Kuhnen, S.
Tomazzoli, M. M.
Zeri, A. C. M.
Carreira, Rafael
Rocha, Miguel
author_role author
author2 Somensi-Zeggio, A.
Oliveira, S. K.
Kuhnen, S.
Tomazzoli, M. M.
Zeri, A. C. M.
Carreira, Rafael
Rocha, Miguel
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Maraschin, Marcelo
Somensi-Zeggio, A.
Oliveira, S. K.
Kuhnen, S.
Tomazzoli, M. M.
Zeri, A. C. M.
Carreira, Rafael
Rocha, Miguel
dc.subject.por.fl_str_mv Supervised classification techniques
Evolutionary algorithms
Random forest
PLS-DA
Wrapper methods
NMR-based metabolomics
Science & Technology
topic Supervised classification techniques
Evolutionary algorithms
Random forest
PLS-DA
Wrapper methods
NMR-based metabolomics
Science & Technology
description In this work, a metabolomics dataset from 1H nuclear magnetic resonance spectroscopy of Brazilian propolis was analyzed using machine learning algorithms, including feature selection and classification methods. Partial least square-discriminant analysis (PLS-DA), random forest (RF), and wrapper methods combining decision trees and rules with evolutionary algorithms (EA) showed to be complementary approaches, allowing to obtain relevant information as to the importance of a given set of features, mostly related to the structural fingerprint of aliphatic and aromatic compounds typically found in propolis, e.g., fatty acids and phenolic compounds. The feature selection and decision tree-based algorithms used appear to be suitable tools for building classification models for the Brazilian propolis metabolomics regarding its geographic origin, with consistency, high accuracy, and avoiding redundant information as to the metabolic signature of relevant compounds.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/23883
url http://hdl.handle.net/1822/23883
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9783642341229
0302-9743
10.1007/978-3-642-34123-6_12
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
Springer Verlag
publisher.none.fl_str_mv Springer Verlag
Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544547286122496