Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.5/24467 |
Resumo: | The probability of ruin in continuous and finite time is numerically evaluated in a classical risk process where the premium can be updated according to credibility models and therefore change from year to year. A major consideration in the development of this approach is that it should be easily applicable to large portfolios. Our method uses as a first tool the model developed by Afonso et al. (2009), which is quite flexible and allows premiums to change annually. We extend that model by introducing a credibility approach to experience rating. We consider a portfolio of risks which satisfy the assumptions of the B¨uhlmann (1967, 1969) or B¨uhlmann and Straub (1970) credibility models. We compute finite time ruin probabilities for different scenarios and compare with those when a fixed premium is considered. |
id |
RCAP_490a6d98a452e062b5522116b815428f |
---|---|
oai_identifier_str |
oai:www.repository.utl.pt:10400.5/24467 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiumsProbability of RuinFinite Time Ruin ProbabilitCredibility PremiumsBuhlmann’s ModelBuhlmann-Straub’s ModelLarge PortfoliosNumerical EvaluationThe probability of ruin in continuous and finite time is numerically evaluated in a classical risk process where the premium can be updated according to credibility models and therefore change from year to year. A major consideration in the development of this approach is that it should be easily applicable to large portfolios. Our method uses as a first tool the model developed by Afonso et al. (2009), which is quite flexible and allows premiums to change annually. We extend that model by introducing a credibility approach to experience rating. We consider a portfolio of risks which satisfy the assumptions of the B¨uhlmann (1967, 1969) or B¨uhlmann and Straub (1970) credibility models. We compute finite time ruin probabilities for different scenarios and compare with those when a fixed premium is considered.Cambridge School PressRepositório da Universidade de LisboaAfonso, Lourdes B.Reis, Alfredo. D. Egídio dosWaters, Howard R.2022-06-02T09:57:28Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/24467engAfonso, Lourdes B., Alfredo D. Egídio Dos Reis and Howard R. Waters. (2010). "Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums." ASTIN Bulletin: The Journal of the IAA; 40.(1): pp. 399-414.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:54:06Zoai:www.repository.utl.pt:10400.5/24467Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:08:30.416928Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
title |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
spellingShingle |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums Afonso, Lourdes B. Probability of Ruin Finite Time Ruin Probabilit Credibility Premiums Buhlmann’s Model Buhlmann-Straub’s Model Large Portfolios Numerical Evaluation |
title_short |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
title_full |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
title_fullStr |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
title_full_unstemmed |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
title_sort |
Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums |
author |
Afonso, Lourdes B. |
author_facet |
Afonso, Lourdes B. Reis, Alfredo. D. Egídio dos Waters, Howard R. |
author_role |
author |
author2 |
Reis, Alfredo. D. Egídio dos Waters, Howard R. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Afonso, Lourdes B. Reis, Alfredo. D. Egídio dos Waters, Howard R. |
dc.subject.por.fl_str_mv |
Probability of Ruin Finite Time Ruin Probabilit Credibility Premiums Buhlmann’s Model Buhlmann-Straub’s Model Large Portfolios Numerical Evaluation |
topic |
Probability of Ruin Finite Time Ruin Probabilit Credibility Premiums Buhlmann’s Model Buhlmann-Straub’s Model Large Portfolios Numerical Evaluation |
description |
The probability of ruin in continuous and finite time is numerically evaluated in a classical risk process where the premium can be updated according to credibility models and therefore change from year to year. A major consideration in the development of this approach is that it should be easily applicable to large portfolios. Our method uses as a first tool the model developed by Afonso et al. (2009), which is quite flexible and allows premiums to change annually. We extend that model by introducing a credibility approach to experience rating. We consider a portfolio of risks which satisfy the assumptions of the B¨uhlmann (1967, 1969) or B¨uhlmann and Straub (1970) credibility models. We compute finite time ruin probabilities for different scenarios and compare with those when a fixed premium is considered. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z 2022-06-02T09:57:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.5/24467 |
url |
http://hdl.handle.net/10400.5/24467 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Afonso, Lourdes B., Alfredo D. Egídio Dos Reis and Howard R. Waters. (2010). "Numerical evaluation of continuous time ruin probabilities for a portfolio with credibility updated premiums." ASTIN Bulletin: The Journal of the IAA; 40.(1): pp. 399-414. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge School Press |
publisher.none.fl_str_mv |
Cambridge School Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131179458232320 |