Enriched Stone-type dualities

Detalhes bibliográficos
Autor(a) principal: Hofmann, Dirk
Data de Publicação: 2018
Outros Autores: Nora, Pedro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/28975
Resumo: A common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-enriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1].
id RCAP_49c611863738dfb42eb62ec691a3d85d
oai_identifier_str oai:ria.ua.pt:10773/28975
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Enriched Stone-type dualitiesDual equivalenceQuantale-enriched categoryKleisli constructionVietoris functorOrdered compact Hausdorff spaceMetric compact Hausdorff spaceA common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-enriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1].Elsevier2020-07-30T18:11:08Z2018-05-25T00:00:00Z2018-05-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28975eng0001-870810.1016/j.aim.2018.03.010Hofmann, DirkNora, Pedroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:58Zoai:ria.ua.pt:10773/28975Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:23.886042Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Enriched Stone-type dualities
title Enriched Stone-type dualities
spellingShingle Enriched Stone-type dualities
Hofmann, Dirk
Dual equivalence
Quantale-enriched category
Kleisli construction
Vietoris functor
Ordered compact Hausdorff space
Metric compact Hausdorff space
title_short Enriched Stone-type dualities
title_full Enriched Stone-type dualities
title_fullStr Enriched Stone-type dualities
title_full_unstemmed Enriched Stone-type dualities
title_sort Enriched Stone-type dualities
author Hofmann, Dirk
author_facet Hofmann, Dirk
Nora, Pedro
author_role author
author2 Nora, Pedro
author2_role author
dc.contributor.author.fl_str_mv Hofmann, Dirk
Nora, Pedro
dc.subject.por.fl_str_mv Dual equivalence
Quantale-enriched category
Kleisli construction
Vietoris functor
Ordered compact Hausdorff space
Metric compact Hausdorff space
topic Dual equivalence
Quantale-enriched category
Kleisli construction
Vietoris functor
Ordered compact Hausdorff space
Metric compact Hausdorff space
description A common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-enriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1].
publishDate 2018
dc.date.none.fl_str_mv 2018-05-25T00:00:00Z
2018-05-25
2020-07-30T18:11:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28975
url http://hdl.handle.net/10773/28975
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0001-8708
10.1016/j.aim.2018.03.010
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137669548081152