Enriched Stone-type dualities
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/28975 |
Resumo: | A common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-enriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1]. |
id |
RCAP_49c611863738dfb42eb62ec691a3d85d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/28975 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Enriched Stone-type dualitiesDual equivalenceQuantale-enriched categoryKleisli constructionVietoris functorOrdered compact Hausdorff spaceMetric compact Hausdorff spaceA common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-enriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1].Elsevier2020-07-30T18:11:08Z2018-05-25T00:00:00Z2018-05-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28975eng0001-870810.1016/j.aim.2018.03.010Hofmann, DirkNora, Pedroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:55:58Zoai:ria.ua.pt:10773/28975Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:23.886042Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Enriched Stone-type dualities |
title |
Enriched Stone-type dualities |
spellingShingle |
Enriched Stone-type dualities Hofmann, Dirk Dual equivalence Quantale-enriched category Kleisli construction Vietoris functor Ordered compact Hausdorff space Metric compact Hausdorff space |
title_short |
Enriched Stone-type dualities |
title_full |
Enriched Stone-type dualities |
title_fullStr |
Enriched Stone-type dualities |
title_full_unstemmed |
Enriched Stone-type dualities |
title_sort |
Enriched Stone-type dualities |
author |
Hofmann, Dirk |
author_facet |
Hofmann, Dirk Nora, Pedro |
author_role |
author |
author2 |
Nora, Pedro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hofmann, Dirk Nora, Pedro |
dc.subject.por.fl_str_mv |
Dual equivalence Quantale-enriched category Kleisli construction Vietoris functor Ordered compact Hausdorff space Metric compact Hausdorff space |
topic |
Dual equivalence Quantale-enriched category Kleisli construction Vietoris functor Ordered compact Hausdorff space Metric compact Hausdorff space |
description |
A common feature of many duality results is that the involved equivalence functors are liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect dualities for categories cogenerated by the two-element set with an appropriate structure. A prime example of such a situation is Stone's duality theorem for Boolean algebras and Boolean spaces, the latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete space. In this paper we aim for a systematic way of extending this duality theorem to categories including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-enriched category theory. Our main idea is that, when passing from the two-element discrete space to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely cocomplete categories enriched in [0, 1]. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-25T00:00:00Z 2018-05-25 2020-07-30T18:11:08Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28975 |
url |
http://hdl.handle.net/10773/28975 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0001-8708 10.1016/j.aim.2018.03.010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137669548081152 |