Hausdorff coalgebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/29176 |
Resumo: | As composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of $\mathsf{Set}$-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider "powerset-like" functors based on the Hausdorff $\mathsf{V}$-category structure. As a starting point, we show that for a lifting of a $\mathsf{SET}$-functor to a topological category $\mathsf{X}$ over $\mathsf{Set}$ that commutes with the forgetful functor, the corresponding category of coalgebras over $\mathsf{X}$ is topological over the category of coalgebras over $\mathsf{Set}$ and, therefore, it is "as complete" but cannot be "more complete". Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these "negative" results, we combine quantale-enriched categories and topology \emph{\`a la} Nachbin. Besides studying some basic properties of these categories, we investigate "powerset-like" functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of "Kripke polynomial" functors are (co)complete. |
id |
RCAP_467a9c4d3a98e70d65cc7dc29590a1a1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29176 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hausdorff coalgebrasCoalgebraMetric spaceCompact spaceHausdorff metricVietoris topologyAs composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of $\mathsf{Set}$-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider "powerset-like" functors based on the Hausdorff $\mathsf{V}$-category structure. As a starting point, we show that for a lifting of a $\mathsf{SET}$-functor to a topological category $\mathsf{X}$ over $\mathsf{Set}$ that commutes with the forgetful functor, the corresponding category of coalgebras over $\mathsf{X}$ is topological over the category of coalgebras over $\mathsf{Set}$ and, therefore, it is "as complete" but cannot be "more complete". Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these "negative" results, we combine quantale-enriched categories and topology \emph{\`a la} Nachbin. Besides studying some basic properties of these categories, we investigate "powerset-like" functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of "Kripke polynomial" functors are (co)complete.Springer2020-102020-10-01T00:00:00Z2021-10-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29176eng0927-285210.1007/s10485-020-09597-8Hofmann, DirkNora, Pedroinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:25Zoai:ria.ua.pt:10773/29176Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:34.048391Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hausdorff coalgebras |
title |
Hausdorff coalgebras |
spellingShingle |
Hausdorff coalgebras Hofmann, Dirk Coalgebra Metric space Compact space Hausdorff metric Vietoris topology |
title_short |
Hausdorff coalgebras |
title_full |
Hausdorff coalgebras |
title_fullStr |
Hausdorff coalgebras |
title_full_unstemmed |
Hausdorff coalgebras |
title_sort |
Hausdorff coalgebras |
author |
Hofmann, Dirk |
author_facet |
Hofmann, Dirk Nora, Pedro |
author_role |
author |
author2 |
Nora, Pedro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hofmann, Dirk Nora, Pedro |
dc.subject.por.fl_str_mv |
Coalgebra Metric space Compact space Hausdorff metric Vietoris topology |
topic |
Coalgebra Metric space Compact space Hausdorff metric Vietoris topology |
description |
As composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of $\mathsf{Set}$-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider "powerset-like" functors based on the Hausdorff $\mathsf{V}$-category structure. As a starting point, we show that for a lifting of a $\mathsf{SET}$-functor to a topological category $\mathsf{X}$ over $\mathsf{Set}$ that commutes with the forgetful functor, the corresponding category of coalgebras over $\mathsf{X}$ is topological over the category of coalgebras over $\mathsf{Set}$ and, therefore, it is "as complete" but cannot be "more complete". Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these "negative" results, we combine quantale-enriched categories and topology \emph{\`a la} Nachbin. Besides studying some basic properties of these categories, we investigate "powerset-like" functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of "Kripke polynomial" functors are (co)complete. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 2020-10-01T00:00:00Z 2021-10-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29176 |
url |
http://hdl.handle.net/10773/29176 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0927-2852 10.1007/s10485-020-09597-8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137671149256704 |