Hausdorff coalgebras

Detalhes bibliográficos
Autor(a) principal: Hofmann, Dirk
Data de Publicação: 2020
Outros Autores: Nora, Pedro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29176
Resumo: As composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of $\mathsf{Set}$-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider "powerset-like" functors based on the Hausdorff $\mathsf{V}$-category structure. As a starting point, we show that for a lifting of a $\mathsf{SET}$-functor to a topological category $\mathsf{X}$ over $\mathsf{Set}$ that commutes with the forgetful functor, the corresponding category of coalgebras over $\mathsf{X}$ is topological over the category of coalgebras over $\mathsf{Set}$ and, therefore, it is "as complete" but cannot be "more complete". Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these "negative" results, we combine quantale-enriched categories and topology \emph{\`a la} Nachbin. Besides studying some basic properties of these categories, we investigate "powerset-like" functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of "Kripke polynomial" functors are (co)complete.
id RCAP_467a9c4d3a98e70d65cc7dc29590a1a1
oai_identifier_str oai:ria.ua.pt:10773/29176
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hausdorff coalgebrasCoalgebraMetric spaceCompact spaceHausdorff metricVietoris topologyAs composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of $\mathsf{Set}$-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider "powerset-like" functors based on the Hausdorff $\mathsf{V}$-category structure. As a starting point, we show that for a lifting of a $\mathsf{SET}$-functor to a topological category $\mathsf{X}$ over $\mathsf{Set}$ that commutes with the forgetful functor, the corresponding category of coalgebras over $\mathsf{X}$ is topological over the category of coalgebras over $\mathsf{Set}$ and, therefore, it is "as complete" but cannot be "more complete". Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these "negative" results, we combine quantale-enriched categories and topology \emph{\`a la} Nachbin. Besides studying some basic properties of these categories, we investigate "powerset-like" functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of "Kripke polynomial" functors are (co)complete.Springer2020-102020-10-01T00:00:00Z2021-10-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/29176eng0927-285210.1007/s10485-020-09597-8Hofmann, DirkNora, Pedroinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:56:25Zoai:ria.ua.pt:10773/29176Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:01:34.048391Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hausdorff coalgebras
title Hausdorff coalgebras
spellingShingle Hausdorff coalgebras
Hofmann, Dirk
Coalgebra
Metric space
Compact space
Hausdorff metric
Vietoris topology
title_short Hausdorff coalgebras
title_full Hausdorff coalgebras
title_fullStr Hausdorff coalgebras
title_full_unstemmed Hausdorff coalgebras
title_sort Hausdorff coalgebras
author Hofmann, Dirk
author_facet Hofmann, Dirk
Nora, Pedro
author_role author
author2 Nora, Pedro
author2_role author
dc.contributor.author.fl_str_mv Hofmann, Dirk
Nora, Pedro
dc.subject.por.fl_str_mv Coalgebra
Metric space
Compact space
Hausdorff metric
Vietoris topology
topic Coalgebra
Metric space
Compact space
Hausdorff metric
Vietoris topology
description As composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of $\mathsf{Set}$-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coalgebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider "powerset-like" functors based on the Hausdorff $\mathsf{V}$-category structure. As a starting point, we show that for a lifting of a $\mathsf{SET}$-functor to a topological category $\mathsf{X}$ over $\mathsf{Set}$ that commutes with the forgetful functor, the corresponding category of coalgebras over $\mathsf{X}$ is topological over the category of coalgebras over $\mathsf{Set}$ and, therefore, it is "as complete" but cannot be "more complete". Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these "negative" results, we combine quantale-enriched categories and topology \emph{\`a la} Nachbin. Besides studying some basic properties of these categories, we investigate "powerset-like" functors which simultaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of "Kripke polynomial" functors are (co)complete.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
2020-10-01T00:00:00Z
2021-10-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29176
url http://hdl.handle.net/10773/29176
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0927-2852
10.1007/s10485-020-09597-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137671149256704