Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks

Detalhes bibliográficos
Autor(a) principal: Proença, H.
Data de Publicação: 2018
Outros Autores: Neves, João
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/9178
Resumo: This work is based on a disruptive hypothesisfor periocular biometrics: in visible-light data, the recognitionperformance is optimized when the components inside the ocularglobe (the iris and the sclera) are simply discarded, and therecogniser’s response is exclusively based in information fromthe surroundings of the eye. As major novelty, we describe aprocessing chain based on convolution neural networks (CNNs)that defines the regions-of-interest in the input data that should beprivileged in an implicit way, i.e., without masking out any areasin the learning/test samples. By using an ocular segmentationalgorithm exclusively in the learning data, we separate the ocularfrom the periocular parts. Then, we produce a large set of”multi-class” artificial samples, by interchanging the periocularand ocular parts from different subjects. These samples areused for data augmentation purposes and feed the learningphase of the CNN, always considering as label the ID of theperiocular part. This way, for every periocular region, the CNNreceives multiple samples of different ocular classes, forcing itto conclude that such regions should not be considered in itsresponse. During the test phase, samples are provided withoutany segmentation mask and the networknaturallydisregardsthe ocular components, which contributes for improvements inperformance. Our experiments were carried out in full versionsof two widely known data sets (UBIRIS.v2 and FRGC) and showthat the proposed method consistently advances the state-of-the-art performance in theclosed-worldsetting, reducing the EERsin about 82% (UBIRIS.v2) and 85% (FRGC) and improving theRank-1 over 41% (UBIRIS.v2) and 12% (FRGC).
id RCAP_49ff7eeebae43952fe4f75de136dd7ea
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/9178
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning FrameworksPeriocular recognitionSoft BiometricsVisual SurveillanceHomeland SecurityThis work is based on a disruptive hypothesisfor periocular biometrics: in visible-light data, the recognitionperformance is optimized when the components inside the ocularglobe (the iris and the sclera) are simply discarded, and therecogniser’s response is exclusively based in information fromthe surroundings of the eye. As major novelty, we describe aprocessing chain based on convolution neural networks (CNNs)that defines the regions-of-interest in the input data that should beprivileged in an implicit way, i.e., without masking out any areasin the learning/test samples. By using an ocular segmentationalgorithm exclusively in the learning data, we separate the ocularfrom the periocular parts. Then, we produce a large set of”multi-class” artificial samples, by interchanging the periocularand ocular parts from different subjects. These samples areused for data augmentation purposes and feed the learningphase of the CNN, always considering as label the ID of theperiocular part. This way, for every periocular region, the CNNreceives multiple samples of different ocular classes, forcing itto conclude that such regions should not be considered in itsresponse. During the test phase, samples are provided withoutany segmentation mask and the networknaturallydisregardsthe ocular components, which contributes for improvements inperformance. Our experiments were carried out in full versionsof two widely known data sets (UBIRIS.v2 and FRGC) and showthat the proposed method consistently advances the state-of-the-art performance in theclosed-worldsetting, reducing the EERsin about 82% (UBIRIS.v2) and 85% (FRGC) and improving theRank-1 over 41% (UBIRIS.v2) and 12% (FRGC).uBibliorumProença, H.Neves, João2020-02-10T14:53:13Z20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/9178eng10.1109/TIFS.2017.2771230info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:49:50Zoai:ubibliorum.ubi.pt:10400.6/9178Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:49:20.823362Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
title Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
spellingShingle Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
Proença, H.
Periocular recognition
Soft Biometrics
Visual Surveillance
Homeland Security
title_short Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
title_full Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
title_fullStr Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
title_full_unstemmed Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
title_sort Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks
author Proença, H.
author_facet Proença, H.
Neves, João
author_role author
author2 Neves, João
author2_role author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Proença, H.
Neves, João
dc.subject.por.fl_str_mv Periocular recognition
Soft Biometrics
Visual Surveillance
Homeland Security
topic Periocular recognition
Soft Biometrics
Visual Surveillance
Homeland Security
description This work is based on a disruptive hypothesisfor periocular biometrics: in visible-light data, the recognitionperformance is optimized when the components inside the ocularglobe (the iris and the sclera) are simply discarded, and therecogniser’s response is exclusively based in information fromthe surroundings of the eye. As major novelty, we describe aprocessing chain based on convolution neural networks (CNNs)that defines the regions-of-interest in the input data that should beprivileged in an implicit way, i.e., without masking out any areasin the learning/test samples. By using an ocular segmentationalgorithm exclusively in the learning data, we separate the ocularfrom the periocular parts. Then, we produce a large set of”multi-class” artificial samples, by interchanging the periocularand ocular parts from different subjects. These samples areused for data augmentation purposes and feed the learningphase of the CNN, always considering as label the ID of theperiocular part. This way, for every periocular region, the CNNreceives multiple samples of different ocular classes, forcing itto conclude that such regions should not be considered in itsresponse. During the test phase, samples are provided withoutany segmentation mask and the networknaturallydisregardsthe ocular components, which contributes for improvements inperformance. Our experiments were carried out in full versionsof two widely known data sets (UBIRIS.v2 and FRGC) and showthat the proposed method consistently advances the state-of-the-art performance in theclosed-worldsetting, reducing the EERsin about 82% (UBIRIS.v2) and 85% (FRGC) and improving theRank-1 over 41% (UBIRIS.v2) and 12% (FRGC).
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2020-02-10T14:53:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/9178
url http://hdl.handle.net/10400.6/9178
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/TIFS.2017.2771230
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136385863516160