Deep periocular representation aiming video surveillance.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFOP |
Texto Completo: | http://www.repositorio.ufop.br/handle/123456789/10370 https://www.sciencedirect.com/science/article/pii/S0167865517304476 |
Resumo: | Usually, in the deep learning community, it is claimed that generalized representations that yielding out- standing performance / effectiveness require a huge amount of data for learning, which directly affect biometric applications. However, recent works combining transfer learning from other domains have sur- mounted such data application constraints designing interesting and promising deep learning approaches in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- ocular region based on deep learning approach is designed and applied on two non-cooperative ocular databases. Impressive representation discrimination is achieved with transfer learning from the facial do- main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases. |
id |
UFOP_1181b07954a48e5a55ad3565e4775f51 |
---|---|
oai_identifier_str |
oai:repositorio.ufop.br:123456789/10370 |
network_acronym_str |
UFOP |
network_name_str |
Repositório Institucional da UFOP |
repository_id_str |
3233 |
spelling |
Deep periocular representation aiming video surveillance.Deep learningTransfer learningVGG Periocular regionVideo surveillanceUsually, in the deep learning community, it is claimed that generalized representations that yielding out- standing performance / effectiveness require a huge amount of data for learning, which directly affect biometric applications. However, recent works combining transfer learning from other domains have sur- mounted such data application constraints designing interesting and promising deep learning approaches in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- ocular region based on deep learning approach is designed and applied on two non-cooperative ocular databases. Impressive representation discrimination is achieved with transfer learning from the facial do- main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases.2018-10-16T12:55:19Z2018-10-16T12:55:19Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMOREIRA, G. J. P. et al. Deep periocular representation aiming video surveillance. Pattern Recognition Letters, v. 114, p. 2-12, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167865517304476>. Acesso em: 16 jun. 2018. 01678655http://www.repositorio.ufop.br/handle/123456789/10370https://www.sciencedirect.com/science/article/pii/S0167865517304476Moreira, Gladston Juliano PratesLuz, Eduardo José da SilvaZanlorensi Junior, Luiz AntonioGomes, David Menottiinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2024-11-10T13:57:06Zoai:repositorio.ufop.br:123456789/10370Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-10T13:57:06Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false |
dc.title.none.fl_str_mv |
Deep periocular representation aiming video surveillance. |
title |
Deep periocular representation aiming video surveillance. |
spellingShingle |
Deep periocular representation aiming video surveillance. Moreira, Gladston Juliano Prates Deep learning Transfer learning VGG Periocular region Video surveillance |
title_short |
Deep periocular representation aiming video surveillance. |
title_full |
Deep periocular representation aiming video surveillance. |
title_fullStr |
Deep periocular representation aiming video surveillance. |
title_full_unstemmed |
Deep periocular representation aiming video surveillance. |
title_sort |
Deep periocular representation aiming video surveillance. |
author |
Moreira, Gladston Juliano Prates |
author_facet |
Moreira, Gladston Juliano Prates Luz, Eduardo José da Silva Zanlorensi Junior, Luiz Antonio Gomes, David Menotti |
author_role |
author |
author2 |
Luz, Eduardo José da Silva Zanlorensi Junior, Luiz Antonio Gomes, David Menotti |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Moreira, Gladston Juliano Prates Luz, Eduardo José da Silva Zanlorensi Junior, Luiz Antonio Gomes, David Menotti |
dc.subject.por.fl_str_mv |
Deep learning Transfer learning VGG Periocular region Video surveillance |
topic |
Deep learning Transfer learning VGG Periocular region Video surveillance |
description |
Usually, in the deep learning community, it is claimed that generalized representations that yielding out- standing performance / effectiveness require a huge amount of data for learning, which directly affect biometric applications. However, recent works combining transfer learning from other domains have sur- mounted such data application constraints designing interesting and promising deep learning approaches in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- ocular region based on deep learning approach is designed and applied on two non-cooperative ocular databases. Impressive representation discrimination is achieved with transfer learning from the facial do- main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-10-16T12:55:19Z 2018-10-16T12:55:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MOREIRA, G. J. P. et al. Deep periocular representation aiming video surveillance. Pattern Recognition Letters, v. 114, p. 2-12, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167865517304476>. Acesso em: 16 jun. 2018. 01678655 http://www.repositorio.ufop.br/handle/123456789/10370 https://www.sciencedirect.com/science/article/pii/S0167865517304476 |
identifier_str_mv |
MOREIRA, G. J. P. et al. Deep periocular representation aiming video surveillance. Pattern Recognition Letters, v. 114, p. 2-12, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167865517304476>. Acesso em: 16 jun. 2018. 01678655 |
url |
http://www.repositorio.ufop.br/handle/123456789/10370 https://www.sciencedirect.com/science/article/pii/S0167865517304476 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFOP instname:Universidade Federal de Ouro Preto (UFOP) instacron:UFOP |
instname_str |
Universidade Federal de Ouro Preto (UFOP) |
instacron_str |
UFOP |
institution |
UFOP |
reponame_str |
Repositório Institucional da UFOP |
collection |
Repositório Institucional da UFOP |
repository.name.fl_str_mv |
Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP) |
repository.mail.fl_str_mv |
repositorio@ufop.edu.br |
_version_ |
1823329282500329472 |