Deep periocular representation aiming video surveillance.

Detalhes bibliográficos
Autor(a) principal: Moreira, Gladston Juliano Prates
Data de Publicação: 2017
Outros Autores: Luz, Eduardo José da Silva, Zanlorensi Junior, Luiz Antonio, Gomes, David Menotti
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFOP
Texto Completo: http://www.repositorio.ufop.br/handle/123456789/10370
https://www.sciencedirect.com/science/article/pii/S0167865517304476
Resumo: Usually, in the deep learning community, it is claimed that generalized representations that yielding out- standing performance / effectiveness require a huge amount of data for learning, which directly affect biometric applications. However, recent works combining transfer learning from other domains have sur- mounted such data application constraints designing interesting and promising deep learning approaches in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- ocular region based on deep learning approach is designed and applied on two non-cooperative ocular databases. Impressive representation discrimination is achieved with transfer learning from the facial do- main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases.
id UFOP_1181b07954a48e5a55ad3565e4775f51
oai_identifier_str oai:repositorio.ufop.br:123456789/10370
network_acronym_str UFOP
network_name_str Repositório Institucional da UFOP
repository_id_str 3233
spelling Deep periocular representation aiming video surveillance.Deep learningTransfer learningVGG Periocular regionVideo surveillanceUsually, in the deep learning community, it is claimed that generalized representations that yielding out- standing performance / effectiveness require a huge amount of data for learning, which directly affect biometric applications. However, recent works combining transfer learning from other domains have sur- mounted such data application constraints designing interesting and promising deep learning approaches in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- ocular region based on deep learning approach is designed and applied on two non-cooperative ocular databases. Impressive representation discrimination is achieved with transfer learning from the facial do- main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases.2018-10-16T12:55:19Z2018-10-16T12:55:19Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMOREIRA, G. J. P. et al. Deep periocular representation aiming video surveillance. Pattern Recognition Letters, v. 114, p. 2-12, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167865517304476>. Acesso em: 16 jun. 2018. 01678655http://www.repositorio.ufop.br/handle/123456789/10370https://www.sciencedirect.com/science/article/pii/S0167865517304476Moreira, Gladston Juliano PratesLuz, Eduardo José da SilvaZanlorensi Junior, Luiz AntonioGomes, David Menottiinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFOPinstname:Universidade Federal de Ouro Preto (UFOP)instacron:UFOP2024-11-10T13:57:06Zoai:repositorio.ufop.br:123456789/10370Repositório InstitucionalPUBhttp://www.repositorio.ufop.br/oai/requestrepositorio@ufop.edu.bropendoar:32332024-11-10T13:57:06Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)false
dc.title.none.fl_str_mv Deep periocular representation aiming video surveillance.
title Deep periocular representation aiming video surveillance.
spellingShingle Deep periocular representation aiming video surveillance.
Moreira, Gladston Juliano Prates
Deep learning
Transfer learning
VGG Periocular region
Video surveillance
title_short Deep periocular representation aiming video surveillance.
title_full Deep periocular representation aiming video surveillance.
title_fullStr Deep periocular representation aiming video surveillance.
title_full_unstemmed Deep periocular representation aiming video surveillance.
title_sort Deep periocular representation aiming video surveillance.
author Moreira, Gladston Juliano Prates
author_facet Moreira, Gladston Juliano Prates
Luz, Eduardo José da Silva
Zanlorensi Junior, Luiz Antonio
Gomes, David Menotti
author_role author
author2 Luz, Eduardo José da Silva
Zanlorensi Junior, Luiz Antonio
Gomes, David Menotti
author2_role author
author
author
dc.contributor.author.fl_str_mv Moreira, Gladston Juliano Prates
Luz, Eduardo José da Silva
Zanlorensi Junior, Luiz Antonio
Gomes, David Menotti
dc.subject.por.fl_str_mv Deep learning
Transfer learning
VGG Periocular region
Video surveillance
topic Deep learning
Transfer learning
VGG Periocular region
Video surveillance
description Usually, in the deep learning community, it is claimed that generalized representations that yielding out- standing performance / effectiveness require a huge amount of data for learning, which directly affect biometric applications. However, recent works combining transfer learning from other domains have sur- mounted such data application constraints designing interesting and promising deep learning approaches in diverse scenarios where data is not so abundant. In this direction, a biometric system for the peri- ocular region based on deep learning approach is designed and applied on two non-cooperative ocular databases. Impressive representation discrimination is achieved with transfer learning from the facial do- main (a deep convolutional network, called VGG) and fine tuning in the specific periocular region domain. With this design, our proposal surmounts previous state-of-the-art results on NICE (mean decidability of 3.47 against 2.57) and MobBio (equal error rate of 5.42% against 8.73%) competition databases.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-10-16T12:55:19Z
2018-10-16T12:55:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MOREIRA, G. J. P. et al. Deep periocular representation aiming video surveillance. Pattern Recognition Letters, v. 114, p. 2-12, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167865517304476>. Acesso em: 16 jun. 2018.
 01678655
http://www.repositorio.ufop.br/handle/123456789/10370
https://www.sciencedirect.com/science/article/pii/S0167865517304476
identifier_str_mv MOREIRA, G. J. P. et al. Deep periocular representation aiming video surveillance. Pattern Recognition Letters, v. 114, p. 2-12, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167865517304476>. Acesso em: 16 jun. 2018.
 01678655
url http://www.repositorio.ufop.br/handle/123456789/10370
https://www.sciencedirect.com/science/article/pii/S0167865517304476
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFOP
instname:Universidade Federal de Ouro Preto (UFOP)
instacron:UFOP
instname_str Universidade Federal de Ouro Preto (UFOP)
instacron_str UFOP
institution UFOP
reponame_str Repositório Institucional da UFOP
collection Repositório Institucional da UFOP
repository.name.fl_str_mv Repositório Institucional da UFOP - Universidade Federal de Ouro Preto (UFOP)
repository.mail.fl_str_mv repositorio@ufop.edu.br
_version_ 1823329282500329472