Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/66292 |
Resumo: | Titanium-based materials are widely employed by the biomedical industry in orthopedic and dental implants. However, when placed into the human body, these materials are highly susceptible to degradation processes, such as corrosion, wear, and tribocorrosion. As a consequence, metallic ions or particles (debris) may be released, and although several studies have been conducted in recent years to better understand the effects of their exposure to living cells, a consensual opinion has not yet been obtained. In this work, we produced metallic based wear particles by tribological tests carried out on Ti-6Al-4V and Ti-15Zr-15Mo alloys. They were posteriorly physicochemically characterized according to their crystal structure, size, morphology, and chemical composition and compared to Ti-6Al-4V commercially available particles. Finally, adsorbed endotoxins were removed (by applying a specific thermal treatment) and endotoxin-free particles were used in cell experiments to evaluate effects of their exposure to human osteoblasts (MG-63 and HOb), namely cell viability/metabolism, proinflammatory cytokine production (IL-6 and PGE2), and susceptibility to internalization processes. Our results indicate that tribologically-obtained wear particles exhibit fundamental differences in terms of size (smaller) and morphology (irregular shapes and rough surfaces) when compared to the commercial ones. Consequently, both Ti-6Al-4V and Ti-15Zr-15Mo particles were able to induce more pronounced effects on cell viability (decrease) and cytokine production (increase) than did Ti-6Al-4V commercial particles. Furthermore, both types of wear particles penetrated osteoblast membranes and were internalized by the cells. Influences on cytokine production by endotoxins were also demonstrated. |
id |
RCAP_49ff9521122751f1e5ef022988f0455d |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/66292 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblastsTitanium implantsDegradationWear particlesEndotoxinsBiological effectsScience & TechnologyTitanium-based materials are widely employed by the biomedical industry in orthopedic and dental implants. However, when placed into the human body, these materials are highly susceptible to degradation processes, such as corrosion, wear, and tribocorrosion. As a consequence, metallic ions or particles (debris) may be released, and although several studies have been conducted in recent years to better understand the effects of their exposure to living cells, a consensual opinion has not yet been obtained. In this work, we produced metallic based wear particles by tribological tests carried out on Ti-6Al-4V and Ti-15Zr-15Mo alloys. They were posteriorly physicochemically characterized according to their crystal structure, size, morphology, and chemical composition and compared to Ti-6Al-4V commercially available particles. Finally, adsorbed endotoxins were removed (by applying a specific thermal treatment) and endotoxin-free particles were used in cell experiments to evaluate effects of their exposure to human osteoblasts (MG-63 and HOb), namely cell viability/metabolism, proinflammatory cytokine production (IL-6 and PGE2), and susceptibility to internalization processes. Our results indicate that tribologically-obtained wear particles exhibit fundamental differences in terms of size (smaller) and morphology (irregular shapes and rough surfaces) when compared to the commercial ones. Consequently, both Ti-6Al-4V and Ti-15Zr-15Mo particles were able to induce more pronounced effects on cell viability (decrease) and cytokine production (increase) than did Ti-6Al-4V commercial particles. Furthermore, both types of wear particles penetrated osteoblast membranes and were internalized by the cells. Influences on cytokine production by endotoxins were also demonstrated.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (2015/50280-5 and 2017/24300-4), Fundacao para a Ciencia e Tecnologia - FCT (UID/EEA/04436/2013), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES (Finance Code 0001), FCT/CAPES Joint Research Project (99999.008666/2014-08), FCT COMPETE 2020 (POCI-01-0145-FEDER-006941 and POCI-01-0145-FEDER-007265) and M-ERA-NET (0001/2015).ElsevierUniversidade do MinhoCosta, Bruna C.Alves, Alexandra Manuela Vieira Cruz PintoToptan, FatihPinto, A. M. P.Grenho, LilianaFernandes, Maria H.Petrovykh, Dmitri Y.Rocha, L. A.Lisboa-Filho, Paulo N.20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/66292eng1751-61611878-018010.1016/j.jmbbm.2019.04.00330999211info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:39:36Zoai:repositorium.sdum.uminho.pt:1822/66292Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:36:14.217629Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
title |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
spellingShingle |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts Costa, Bruna C. Titanium implants Degradation Wear particles Endotoxins Biological effects Science & Technology |
title_short |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
title_full |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
title_fullStr |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
title_full_unstemmed |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
title_sort |
Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts |
author |
Costa, Bruna C. |
author_facet |
Costa, Bruna C. Alves, Alexandra Manuela Vieira Cruz Pinto Toptan, Fatih Pinto, A. M. P. Grenho, Liliana Fernandes, Maria H. Petrovykh, Dmitri Y. Rocha, L. A. Lisboa-Filho, Paulo N. |
author_role |
author |
author2 |
Alves, Alexandra Manuela Vieira Cruz Pinto Toptan, Fatih Pinto, A. M. P. Grenho, Liliana Fernandes, Maria H. Petrovykh, Dmitri Y. Rocha, L. A. Lisboa-Filho, Paulo N. |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Costa, Bruna C. Alves, Alexandra Manuela Vieira Cruz Pinto Toptan, Fatih Pinto, A. M. P. Grenho, Liliana Fernandes, Maria H. Petrovykh, Dmitri Y. Rocha, L. A. Lisboa-Filho, Paulo N. |
dc.subject.por.fl_str_mv |
Titanium implants Degradation Wear particles Endotoxins Biological effects Science & Technology |
topic |
Titanium implants Degradation Wear particles Endotoxins Biological effects Science & Technology |
description |
Titanium-based materials are widely employed by the biomedical industry in orthopedic and dental implants. However, when placed into the human body, these materials are highly susceptible to degradation processes, such as corrosion, wear, and tribocorrosion. As a consequence, metallic ions or particles (debris) may be released, and although several studies have been conducted in recent years to better understand the effects of their exposure to living cells, a consensual opinion has not yet been obtained. In this work, we produced metallic based wear particles by tribological tests carried out on Ti-6Al-4V and Ti-15Zr-15Mo alloys. They were posteriorly physicochemically characterized according to their crystal structure, size, morphology, and chemical composition and compared to Ti-6Al-4V commercially available particles. Finally, adsorbed endotoxins were removed (by applying a specific thermal treatment) and endotoxin-free particles were used in cell experiments to evaluate effects of their exposure to human osteoblasts (MG-63 and HOb), namely cell viability/metabolism, proinflammatory cytokine production (IL-6 and PGE2), and susceptibility to internalization processes. Our results indicate that tribologically-obtained wear particles exhibit fundamental differences in terms of size (smaller) and morphology (irregular shapes and rough surfaces) when compared to the commercial ones. Consequently, both Ti-6Al-4V and Ti-15Zr-15Mo particles were able to induce more pronounced effects on cell viability (decrease) and cytokine production (increase) than did Ti-6Al-4V commercial particles. Furthermore, both types of wear particles penetrated osteoblast membranes and were internalized by the cells. Influences on cytokine production by endotoxins were also demonstrated. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/66292 |
url |
http://hdl.handle.net/1822/66292 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1751-6161 1878-0180 10.1016/j.jmbbm.2019.04.003 30999211 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132890774110208 |