Time-fractional diffusion equation with psi-Hilfer derivative
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.8/7513 |
Resumo: | In this work, we consider the multidimensional time-fractional diffusion equation with the $\psi$-Hilfer derivative. This fractional derivative enables the interpolation between Riemann-Liouville and Caputo fractional derivatives and its kernel depends on an arbitrary positive monotone increasing function $\psi$ thus encompassing several fractional derivatives in the literature. This allows us to obtain general results for different families of problems that depend on the function $\psi$ selected. By employing techniques of Fourier, $\psi$-Laplace, and Mellin transforms, we obtain a solution representation in terms of convolutions involving Fox H-functions for the Cauchy problem associated with our equation. Series representations of the first fundamental solution are explicitly obtained for any dimension as well as the fractional moments of arbitrary positive order. For the one-dimensional case, we show that the series representation reduces to a Wright function, and we prove that it corresponds to a probability density function for any admissible $\psi$. Finally, some plots of the fundamental solution are presented for particular choices of the function $\psi$ and the order of differentiation. |
id |
RCAP_4a33454acbb3544c4f35285bdac9d46e |
---|---|
oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/7513 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Time-fractional diffusion equation with psi-Hilfer derivativeTime-fractional diffusion equationpsi-Hilfer fractional derivative\psi-Laplace transformFundamental solutionFractional momentsIn this work, we consider the multidimensional time-fractional diffusion equation with the $\psi$-Hilfer derivative. This fractional derivative enables the interpolation between Riemann-Liouville and Caputo fractional derivatives and its kernel depends on an arbitrary positive monotone increasing function $\psi$ thus encompassing several fractional derivatives in the literature. This allows us to obtain general results for different families of problems that depend on the function $\psi$ selected. By employing techniques of Fourier, $\psi$-Laplace, and Mellin transforms, we obtain a solution representation in terms of convolutions involving Fox H-functions for the Cauchy problem associated with our equation. Series representations of the first fundamental solution are explicitly obtained for any dimension as well as the fractional moments of arbitrary positive order. For the one-dimensional case, we show that the series representation reduces to a Wright function, and we prove that it corresponds to a probability density function for any admissible $\psi$. Finally, some plots of the fundamental solution are presented for particular choices of the function $\psi$ and the order of differentiation.SpringerIC-OnlineVieira, NelsonRodrigues, M. ManuelaFerreira, Milton2023-07-01T00:30:21Z2022-072022-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/7513engVieira, N., Rodrigues, M.M. & Ferreira, M. Time-fractional diffusion equation with ψ-Hilfer derivative. Comp. Appl. Math. 41, 230 (2022). https://doi.org/10.1007/s40314-022-01911-510.1007/s40314-022-01911-51807-0302info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:55:20Zoai:iconline.ipleiria.pt:10400.8/7513Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:50:27.674867Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Time-fractional diffusion equation with psi-Hilfer derivative |
title |
Time-fractional diffusion equation with psi-Hilfer derivative |
spellingShingle |
Time-fractional diffusion equation with psi-Hilfer derivative Vieira, Nelson Time-fractional diffusion equation psi-Hilfer fractional derivative \psi-Laplace transform Fundamental solution Fractional moments |
title_short |
Time-fractional diffusion equation with psi-Hilfer derivative |
title_full |
Time-fractional diffusion equation with psi-Hilfer derivative |
title_fullStr |
Time-fractional diffusion equation with psi-Hilfer derivative |
title_full_unstemmed |
Time-fractional diffusion equation with psi-Hilfer derivative |
title_sort |
Time-fractional diffusion equation with psi-Hilfer derivative |
author |
Vieira, Nelson |
author_facet |
Vieira, Nelson Rodrigues, M. Manuela Ferreira, Milton |
author_role |
author |
author2 |
Rodrigues, M. Manuela Ferreira, Milton |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
IC-Online |
dc.contributor.author.fl_str_mv |
Vieira, Nelson Rodrigues, M. Manuela Ferreira, Milton |
dc.subject.por.fl_str_mv |
Time-fractional diffusion equation psi-Hilfer fractional derivative \psi-Laplace transform Fundamental solution Fractional moments |
topic |
Time-fractional diffusion equation psi-Hilfer fractional derivative \psi-Laplace transform Fundamental solution Fractional moments |
description |
In this work, we consider the multidimensional time-fractional diffusion equation with the $\psi$-Hilfer derivative. This fractional derivative enables the interpolation between Riemann-Liouville and Caputo fractional derivatives and its kernel depends on an arbitrary positive monotone increasing function $\psi$ thus encompassing several fractional derivatives in the literature. This allows us to obtain general results for different families of problems that depend on the function $\psi$ selected. By employing techniques of Fourier, $\psi$-Laplace, and Mellin transforms, we obtain a solution representation in terms of convolutions involving Fox H-functions for the Cauchy problem associated with our equation. Series representations of the first fundamental solution are explicitly obtained for any dimension as well as the fractional moments of arbitrary positive order. For the one-dimensional case, we show that the series representation reduces to a Wright function, and we prove that it corresponds to a probability density function for any admissible $\psi$. Finally, some plots of the fundamental solution are presented for particular choices of the function $\psi$ and the order of differentiation. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07 2022-07-01T00:00:00Z 2023-07-01T00:30:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/7513 |
url |
http://hdl.handle.net/10400.8/7513 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Vieira, N., Rodrigues, M.M. & Ferreira, M. Time-fractional diffusion equation with ψ-Hilfer derivative. Comp. Appl. Math. 41, 230 (2022). https://doi.org/10.1007/s40314-022-01911-5 10.1007/s40314-022-01911-5 1807-0302 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136997041766400 |