Time-fractional diffusion equation with psi-Hilfer derivative

Detalhes bibliográficos
Autor(a) principal: Vieira, Nelson
Data de Publicação: 2022
Outros Autores: Rodrigues, M. Manuela, Ferreira, Milton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.8/7513
Resumo: In this work, we consider the multidimensional time-fractional diffusion equation with the $\psi$-Hilfer derivative. This fractional derivative enables the interpolation between Riemann-Liouville and Caputo fractional derivatives and its kernel depends on an arbitrary positive monotone increasing function $\psi$ thus encompassing several fractional derivatives in the literature. This allows us to obtain general results for different families of problems that depend on the function $\psi$ selected. By employing techniques of Fourier, $\psi$-Laplace, and Mellin transforms, we obtain a solution representation in terms of convolutions involving Fox H-functions for the Cauchy problem associated with our equation. Series representations of the first fundamental solution are explicitly obtained for any dimension as well as the fractional moments of arbitrary positive order. For the one-dimensional case, we show that the series representation reduces to a Wright function, and we prove that it corresponds to a probability density function for any admissible $\psi$. Finally, some plots of the fundamental solution are presented for particular choices of the function $\psi$ and the order of differentiation.
id RCAP_4a33454acbb3544c4f35285bdac9d46e
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/7513
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Time-fractional diffusion equation with psi-Hilfer derivativeTime-fractional diffusion equationpsi-Hilfer fractional derivative\psi-Laplace transformFundamental solutionFractional momentsIn this work, we consider the multidimensional time-fractional diffusion equation with the $\psi$-Hilfer derivative. This fractional derivative enables the interpolation between Riemann-Liouville and Caputo fractional derivatives and its kernel depends on an arbitrary positive monotone increasing function $\psi$ thus encompassing several fractional derivatives in the literature. This allows us to obtain general results for different families of problems that depend on the function $\psi$ selected. By employing techniques of Fourier, $\psi$-Laplace, and Mellin transforms, we obtain a solution representation in terms of convolutions involving Fox H-functions for the Cauchy problem associated with our equation. Series representations of the first fundamental solution are explicitly obtained for any dimension as well as the fractional moments of arbitrary positive order. For the one-dimensional case, we show that the series representation reduces to a Wright function, and we prove that it corresponds to a probability density function for any admissible $\psi$. Finally, some plots of the fundamental solution are presented for particular choices of the function $\psi$ and the order of differentiation.SpringerIC-OnlineVieira, NelsonRodrigues, M. ManuelaFerreira, Milton2023-07-01T00:30:21Z2022-072022-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/7513engVieira, N., Rodrigues, M.M. & Ferreira, M. Time-fractional diffusion equation with ψ-Hilfer derivative. Comp. Appl. Math. 41, 230 (2022). https://doi.org/10.1007/s40314-022-01911-510.1007/s40314-022-01911-51807-0302info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-17T15:55:20Zoai:iconline.ipleiria.pt:10400.8/7513Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:50:27.674867Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Time-fractional diffusion equation with psi-Hilfer derivative
title Time-fractional diffusion equation with psi-Hilfer derivative
spellingShingle Time-fractional diffusion equation with psi-Hilfer derivative
Vieira, Nelson
Time-fractional diffusion equation
psi-Hilfer fractional derivative
\psi-Laplace transform
Fundamental solution
Fractional moments
title_short Time-fractional diffusion equation with psi-Hilfer derivative
title_full Time-fractional diffusion equation with psi-Hilfer derivative
title_fullStr Time-fractional diffusion equation with psi-Hilfer derivative
title_full_unstemmed Time-fractional diffusion equation with psi-Hilfer derivative
title_sort Time-fractional diffusion equation with psi-Hilfer derivative
author Vieira, Nelson
author_facet Vieira, Nelson
Rodrigues, M. Manuela
Ferreira, Milton
author_role author
author2 Rodrigues, M. Manuela
Ferreira, Milton
author2_role author
author
dc.contributor.none.fl_str_mv IC-Online
dc.contributor.author.fl_str_mv Vieira, Nelson
Rodrigues, M. Manuela
Ferreira, Milton
dc.subject.por.fl_str_mv Time-fractional diffusion equation
psi-Hilfer fractional derivative
\psi-Laplace transform
Fundamental solution
Fractional moments
topic Time-fractional diffusion equation
psi-Hilfer fractional derivative
\psi-Laplace transform
Fundamental solution
Fractional moments
description In this work, we consider the multidimensional time-fractional diffusion equation with the $\psi$-Hilfer derivative. This fractional derivative enables the interpolation between Riemann-Liouville and Caputo fractional derivatives and its kernel depends on an arbitrary positive monotone increasing function $\psi$ thus encompassing several fractional derivatives in the literature. This allows us to obtain general results for different families of problems that depend on the function $\psi$ selected. By employing techniques of Fourier, $\psi$-Laplace, and Mellin transforms, we obtain a solution representation in terms of convolutions involving Fox H-functions for the Cauchy problem associated with our equation. Series representations of the first fundamental solution are explicitly obtained for any dimension as well as the fractional moments of arbitrary positive order. For the one-dimensional case, we show that the series representation reduces to a Wright function, and we prove that it corresponds to a probability density function for any admissible $\psi$. Finally, some plots of the fundamental solution are presented for particular choices of the function $\psi$ and the order of differentiation.
publishDate 2022
dc.date.none.fl_str_mv 2022-07
2022-07-01T00:00:00Z
2023-07-01T00:30:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/7513
url http://hdl.handle.net/10400.8/7513
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Vieira, N., Rodrigues, M.M. & Ferreira, M. Time-fractional diffusion equation with ψ-Hilfer derivative. Comp. Appl. Math. 41, 230 (2022). https://doi.org/10.1007/s40314-022-01911-5
10.1007/s40314-022-01911-5
1807-0302
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136997041766400