A framework for emotion and sentiment predicting supported in ensembles

Detalhes bibliográficos
Autor(a) principal: Novais, Rui Miguel Boneco
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/19247
Resumo: Humans are prepared to comprehend each other’s emotions through subtle body movements or facial expressions; using those expressions, individuals change how they deliver messages when communicating between them. Machines, user interfaces, or robots need to empower this ability, in a way to change the interaction from the traditional “human-computer interaction” to a “human-machine cooperation”, where the machine provides the “right” information and functionality, at the “right” time, and in the “right” way. This dissertation presents a framework for emotion classification based on facial, speech, and text emotion prediction sources, supported by an ensemble of open-source code retrieved from off-the-shelf available methods. The main contribution is integrating outputs from different sources and methods in a single prediction, consistent with the emotions presented by the system’s user. For each different source, an initial aggregation of primary classifiers was implemented: for facial emotion classification, the aggregation achieved an accuracy above 73% in both FER2013 and RAF-DB datasets; For the speech emotion classification, four datasets were used, namely: RAVDESS, TESS, CREMA-D, and SAVEE. The aggregation of primary classifiers, achieved for a combination of three of the mentioned datasets results above 86 % of accuracy; The text emotion aggregation of primary classifiers was tested with one dataset called EMOTIONLINES, the classification of emotions achieved an accuracy above 53 %. Finally, the integration of all the methods in a single framework allows us to develop an emotion multi-source aggregator (EMsA), which aggregates the results extracted from the primary emotion classifications from different sources, such as facial, speech, text etc. We describe the EMsA and results using the RAVDESS dataset, which achieved 81.99% accuracy, in the case of the EMsA using a combination of faces and speech. Finally, we present an initial approach for sentiment classification.
id RCAP_4a97805c7696fba331e89e58e1807e02
oai_identifier_str oai:sapientia.ualg.pt:10400.1/19247
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A framework for emotion and sentiment predicting supported in ensemblesEmoções faciaisEmoções da falaEmoções do textoSentimentoEnsemblesAprendizagem automáticaHumans are prepared to comprehend each other’s emotions through subtle body movements or facial expressions; using those expressions, individuals change how they deliver messages when communicating between them. Machines, user interfaces, or robots need to empower this ability, in a way to change the interaction from the traditional “human-computer interaction” to a “human-machine cooperation”, where the machine provides the “right” information and functionality, at the “right” time, and in the “right” way. This dissertation presents a framework for emotion classification based on facial, speech, and text emotion prediction sources, supported by an ensemble of open-source code retrieved from off-the-shelf available methods. The main contribution is integrating outputs from different sources and methods in a single prediction, consistent with the emotions presented by the system’s user. For each different source, an initial aggregation of primary classifiers was implemented: for facial emotion classification, the aggregation achieved an accuracy above 73% in both FER2013 and RAF-DB datasets; For the speech emotion classification, four datasets were used, namely: RAVDESS, TESS, CREMA-D, and SAVEE. The aggregation of primary classifiers, achieved for a combination of three of the mentioned datasets results above 86 % of accuracy; The text emotion aggregation of primary classifiers was tested with one dataset called EMOTIONLINES, the classification of emotions achieved an accuracy above 53 %. Finally, the integration of all the methods in a single framework allows us to develop an emotion multi-source aggregator (EMsA), which aggregates the results extracted from the primary emotion classifications from different sources, such as facial, speech, text etc. We describe the EMsA and results using the RAVDESS dataset, which achieved 81.99% accuracy, in the case of the EMsA using a combination of faces and speech. Finally, we present an initial approach for sentiment classification.Cardoso, Pedro J. S.Rodrigues, J. M .F.SapientiaNovais, Rui Miguel Boneco2023-03-14T12:22:21Z2022-11-042022-11-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/19247enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-29T10:29:07Zoai:sapientia.ualg.pt:10400.1/19247Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-29T10:29:07Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A framework for emotion and sentiment predicting supported in ensembles
title A framework for emotion and sentiment predicting supported in ensembles
spellingShingle A framework for emotion and sentiment predicting supported in ensembles
Novais, Rui Miguel Boneco
Emoções faciais
Emoções da fala
Emoções do texto
Sentimento
Ensembles
Aprendizagem automática
title_short A framework for emotion and sentiment predicting supported in ensembles
title_full A framework for emotion and sentiment predicting supported in ensembles
title_fullStr A framework for emotion and sentiment predicting supported in ensembles
title_full_unstemmed A framework for emotion and sentiment predicting supported in ensembles
title_sort A framework for emotion and sentiment predicting supported in ensembles
author Novais, Rui Miguel Boneco
author_facet Novais, Rui Miguel Boneco
author_role author
dc.contributor.none.fl_str_mv Cardoso, Pedro J. S.
Rodrigues, J. M .F.
Sapientia
dc.contributor.author.fl_str_mv Novais, Rui Miguel Boneco
dc.subject.por.fl_str_mv Emoções faciais
Emoções da fala
Emoções do texto
Sentimento
Ensembles
Aprendizagem automática
topic Emoções faciais
Emoções da fala
Emoções do texto
Sentimento
Ensembles
Aprendizagem automática
description Humans are prepared to comprehend each other’s emotions through subtle body movements or facial expressions; using those expressions, individuals change how they deliver messages when communicating between them. Machines, user interfaces, or robots need to empower this ability, in a way to change the interaction from the traditional “human-computer interaction” to a “human-machine cooperation”, where the machine provides the “right” information and functionality, at the “right” time, and in the “right” way. This dissertation presents a framework for emotion classification based on facial, speech, and text emotion prediction sources, supported by an ensemble of open-source code retrieved from off-the-shelf available methods. The main contribution is integrating outputs from different sources and methods in a single prediction, consistent with the emotions presented by the system’s user. For each different source, an initial aggregation of primary classifiers was implemented: for facial emotion classification, the aggregation achieved an accuracy above 73% in both FER2013 and RAF-DB datasets; For the speech emotion classification, four datasets were used, namely: RAVDESS, TESS, CREMA-D, and SAVEE. The aggregation of primary classifiers, achieved for a combination of three of the mentioned datasets results above 86 % of accuracy; The text emotion aggregation of primary classifiers was tested with one dataset called EMOTIONLINES, the classification of emotions achieved an accuracy above 53 %. Finally, the integration of all the methods in a single framework allows us to develop an emotion multi-source aggregator (EMsA), which aggregates the results extracted from the primary emotion classifications from different sources, such as facial, speech, text etc. We describe the EMsA and results using the RAVDESS dataset, which achieved 81.99% accuracy, in the case of the EMsA using a combination of faces and speech. Finally, we present an initial approach for sentiment classification.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-04
2022-11-04T00:00:00Z
2023-03-14T12:22:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/19247
url http://hdl.handle.net/10400.1/19247
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549712694181888