Exploring the gap between dynamic and constraint-based models of metabolism
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/22325 |
Resumo: | Systems biology provides new approaches for metabolic engineering through the development of models and methods for simulation and optimization of microbial metabolism. Here we explore the relationship between two modeling frameworks in common use namely, dynamic models with kinetic rate laws and constraint-based flux models. We compare and analyze dynamic and constraint-based formulations of the same model of the central carbon metabolism of E. coli. Our results show that, if unconstrained, the space of steady states described by both formulations is the same. However, the imposition of parameter-range constraints can be mapped into kinetically feasible regions of the solution space for the dynamic formulation that is not readily transferable to the constraint-based formulation. Therefore, with partial kinetic parameter knowledge, dynamic models can be used to generate constraints that reduce the solution space below that identied by constraint-based models, eliminating infeasible solutions and increasing the accuracy of simulation and optimization methods. |
id |
RCAP_4b3f4fd38051552fe5a9caade618719a |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/22325 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exploring the gap between dynamic and constraint-based models of metabolismSystems biologyMetabolic networksDynamic modelsConstraint-based modelsScience & TechnologySystems biology provides new approaches for metabolic engineering through the development of models and methods for simulation and optimization of microbial metabolism. Here we explore the relationship between two modeling frameworks in common use namely, dynamic models with kinetic rate laws and constraint-based flux models. We compare and analyze dynamic and constraint-based formulations of the same model of the central carbon metabolism of E. coli. Our results show that, if unconstrained, the space of steady states described by both formulations is the same. However, the imposition of parameter-range constraints can be mapped into kinetically feasible regions of the solution space for the dynamic formulation that is not readily transferable to the constraint-based formulation. Therefore, with partial kinetic parameter knowledge, dynamic models can be used to generate constraints that reduce the solution space below that identied by constraint-based models, eliminating infeasible solutions and increasing the accuracy of simulation and optimization methods.This research was supported by PhD Grants SFRH/BD/35215/2007 and SFRH/BD/25506/2005 from the Fundacao para a Ciencia e a Tecnologia (FCT) and the MIT-Portugal Program through the project "Bridging Systems and Synthetic Biology for the Development of Improved Microbial Cell Factories" (MIT-Pt/BS-BB/0082/2008).Academic PressUniversidade do MinhoMachado, C. D.Costa, Rafael S.Ferreira, Eugénio C.Rocha, I.Tidor, Bruce20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/22325eng1096-717610.1016/j.ymben.2012.01.00322306209info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:03Zoai:repositorium.sdum.uminho.pt:1822/22325Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:48:41.193131Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exploring the gap between dynamic and constraint-based models of metabolism |
title |
Exploring the gap between dynamic and constraint-based models of metabolism |
spellingShingle |
Exploring the gap between dynamic and constraint-based models of metabolism Machado, C. D. Systems biology Metabolic networks Dynamic models Constraint-based models Science & Technology |
title_short |
Exploring the gap between dynamic and constraint-based models of metabolism |
title_full |
Exploring the gap between dynamic and constraint-based models of metabolism |
title_fullStr |
Exploring the gap between dynamic and constraint-based models of metabolism |
title_full_unstemmed |
Exploring the gap between dynamic and constraint-based models of metabolism |
title_sort |
Exploring the gap between dynamic and constraint-based models of metabolism |
author |
Machado, C. D. |
author_facet |
Machado, C. D. Costa, Rafael S. Ferreira, Eugénio C. Rocha, I. Tidor, Bruce |
author_role |
author |
author2 |
Costa, Rafael S. Ferreira, Eugénio C. Rocha, I. Tidor, Bruce |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Machado, C. D. Costa, Rafael S. Ferreira, Eugénio C. Rocha, I. Tidor, Bruce |
dc.subject.por.fl_str_mv |
Systems biology Metabolic networks Dynamic models Constraint-based models Science & Technology |
topic |
Systems biology Metabolic networks Dynamic models Constraint-based models Science & Technology |
description |
Systems biology provides new approaches for metabolic engineering through the development of models and methods for simulation and optimization of microbial metabolism. Here we explore the relationship between two modeling frameworks in common use namely, dynamic models with kinetic rate laws and constraint-based flux models. We compare and analyze dynamic and constraint-based formulations of the same model of the central carbon metabolism of E. coli. Our results show that, if unconstrained, the space of steady states described by both formulations is the same. However, the imposition of parameter-range constraints can be mapped into kinetically feasible regions of the solution space for the dynamic formulation that is not readily transferable to the constraint-based formulation. Therefore, with partial kinetic parameter knowledge, dynamic models can be used to generate constraints that reduce the solution space below that identied by constraint-based models, eliminating infeasible solutions and increasing the accuracy of simulation and optimization methods. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/22325 |
url |
https://hdl.handle.net/1822/22325 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1096-7176 10.1016/j.ymben.2012.01.003 22306209 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press |
publisher.none.fl_str_mv |
Academic Press |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133066256449536 |