Automatically estimating iSAX parameters

Detalhes bibliográficos
Autor(a) principal: Castro, Nuno Constantino
Data de Publicação: 2015
Outros Autores: Azevedo, Paulo J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/40542
Resumo: The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.
id RCAP_4c1e43f0e5c9631b44b30c015775674f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/40542
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Automatically estimating iSAX parametersTime seriesData miningRepresentationiSAXParametersScience & TechnologyThe Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.IOS PressUniversidade do MinhoCastro, Nuno ConstantinoAzevedo, Paulo J.20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/40542engCastro, N. C., & Azevedo, P. J. (2015). Automatically estimating iSAX parameters. Intelligent Data Analysis, 19(3), 581-595. doi: 10.3233/ida-1507331088-467X10.3233/ida-150733info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:45:50Zoai:repositorium.sdum.uminho.pt:1822/40542Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:43:45.064237Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Automatically estimating iSAX parameters
title Automatically estimating iSAX parameters
spellingShingle Automatically estimating iSAX parameters
Castro, Nuno Constantino
Time series
Data mining
Representation
iSAX
Parameters
Science & Technology
title_short Automatically estimating iSAX parameters
title_full Automatically estimating iSAX parameters
title_fullStr Automatically estimating iSAX parameters
title_full_unstemmed Automatically estimating iSAX parameters
title_sort Automatically estimating iSAX parameters
author Castro, Nuno Constantino
author_facet Castro, Nuno Constantino
Azevedo, Paulo J.
author_role author
author2 Azevedo, Paulo J.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Castro, Nuno Constantino
Azevedo, Paulo J.
dc.subject.por.fl_str_mv Time series
Data mining
Representation
iSAX
Parameters
Science & Technology
topic Time series
Data mining
Representation
iSAX
Parameters
Science & Technology
description The Symbolic Aggregate Approximation (iSAX) is widely used in time series data mining. Its popularity arises from the fact that it largely reduces time series size, it is symbolic, allows lower bounding and is space efficient. However, it requires setting two parameters: the symbolic length and alphabet size, which limits the applicability of the technique. The optimal parameter values are highly application dependent. Typically, they are either set to a fixed value or experimentally probed for the best configuration. In this work we propose an approach to automatically estimate iSAX’s parameters. The approach – AutoiSAX – not only discovers the best parameter setting for each time series in the database, but also finds the alphabet size for each iSAX symbol within the same word. It is based on simple and intuitive ideas from time series complexity and statistics. The technique can be smoothly embedded in existing data mining tasks as an efficient sub-routine. We analyze its impact in visualization interpretability, classification accuracy and motif mining. Our contribution aims to make iSAX a more general approach as it evolves towards a parameter-free method.
publishDate 2015
dc.date.none.fl_str_mv 2015
2015-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/40542
url http://hdl.handle.net/1822/40542
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Castro, N. C., & Azevedo, P. J. (2015). Automatically estimating iSAX parameters. Intelligent Data Analysis, 19(3), 581-595. doi: 10.3233/ida-150733
1088-467X
10.3233/ida-150733
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132995664216064