Aprendizagem máquina aplicada ao contexto do Poker

Detalhes bibliográficos
Autor(a) principal: Martins, Tiago Silva
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/17674
Resumo: A combinação de princípios da teoria de jogo e metodologias de machine learning aplicados ao contexto de formular estratégias ótimas para jogos está a angariar interesse por parte de uma porção crescentemente significativa da comunidade científica, tornando-se o jogo do Poker num candidato de estudo popular devido à sua natureza de informação imperfeita. Avanços nesta área possuem vastas aplicações em cenários do mundo real, e a área de investigação de inteligência artificial demonstra que o interesse relativo a este objeto de estudo está longe de desaparecer, com investigadores do Facebook e Carnegie Mellon a apresentar, em 2019, o primeiro agente de jogo autónomo de Poker provado como ganhador num cenário com múltiplos jogadores, uma conquista relativamente à anterior especificação do estado da arte, que fora desenvolvida para jogos de apenas 2 jogadores. Este estudo pretende explorar as características de jogos estocásticos de informação imperfeita, recolhendo informação acerca dos avanços nas metodologias disponibilizados por parte de investigadores de forma a desenvolver um agente autónomo de jogo que se pretende inserir na classificação de "utility-maximizing decision-maker".
id RCAP_4ed36e78e4d635c3fcd0e2093ce075eb
oai_identifier_str oai:recipp.ipp.pt:10400.22/17674
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Aprendizagem máquina aplicada ao contexto do PokerMachine learning applied to the context of PokerMachine LearningGame TheoryPokerStrategy GamesProbabilitiesOpponent ModelingA combinação de princípios da teoria de jogo e metodologias de machine learning aplicados ao contexto de formular estratégias ótimas para jogos está a angariar interesse por parte de uma porção crescentemente significativa da comunidade científica, tornando-se o jogo do Poker num candidato de estudo popular devido à sua natureza de informação imperfeita. Avanços nesta área possuem vastas aplicações em cenários do mundo real, e a área de investigação de inteligência artificial demonstra que o interesse relativo a este objeto de estudo está longe de desaparecer, com investigadores do Facebook e Carnegie Mellon a apresentar, em 2019, o primeiro agente de jogo autónomo de Poker provado como ganhador num cenário com múltiplos jogadores, uma conquista relativamente à anterior especificação do estado da arte, que fora desenvolvida para jogos de apenas 2 jogadores. Este estudo pretende explorar as características de jogos estocásticos de informação imperfeita, recolhendo informação acerca dos avanços nas metodologias disponibilizados por parte de investigadores de forma a desenvolver um agente autónomo de jogo que se pretende inserir na classificação de "utility-maximizing decision-maker".The combination of game theory principles and machine learning methodologies applied to encountering optimal strategies for games is garnering interest from an increasing large portion of the scientific community, with the game of Poker being a popular study subject due to its imperfect information nature. Advancements in this area have a wide array of applications in real-world scenarios, and the field of artificial intelligent studies show that the interest regarding this object of study is yet to fade, with researchers from Facebook and Carnegie Mellon presenting, in 2019, the world’s first autonomous Poker playing agent that is proven to be profitable while confronting multiple players at a time, an achievement in relation to the previous state of the art specification, which was developed for two player games only. This study intends to explore the characteristics of stochastic games of imperfect information, gathering information regarding the advancements in methodologies made available by researchers in order to ultimately develop an autonomous agent intended to adhere to the classification of a utility-maximizing decision-maker.Carvalho, Carlos Miguel Miranda Vaz deRepositório Científico do Instituto Politécnico do PortoMartins, Tiago Silva2021-03-26T11:40:48Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/17674TID:202551229enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:08:45Zoai:recipp.ipp.pt:10400.22/17674Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:37:17.315419Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Aprendizagem máquina aplicada ao contexto do Poker
Machine learning applied to the context of Poker
title Aprendizagem máquina aplicada ao contexto do Poker
spellingShingle Aprendizagem máquina aplicada ao contexto do Poker
Martins, Tiago Silva
Machine Learning
Game Theory
Poker
Strategy Games
Probabilities
Opponent Modeling
title_short Aprendizagem máquina aplicada ao contexto do Poker
title_full Aprendizagem máquina aplicada ao contexto do Poker
title_fullStr Aprendizagem máquina aplicada ao contexto do Poker
title_full_unstemmed Aprendizagem máquina aplicada ao contexto do Poker
title_sort Aprendizagem máquina aplicada ao contexto do Poker
author Martins, Tiago Silva
author_facet Martins, Tiago Silva
author_role author
dc.contributor.none.fl_str_mv Carvalho, Carlos Miguel Miranda Vaz de
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Martins, Tiago Silva
dc.subject.por.fl_str_mv Machine Learning
Game Theory
Poker
Strategy Games
Probabilities
Opponent Modeling
topic Machine Learning
Game Theory
Poker
Strategy Games
Probabilities
Opponent Modeling
description A combinação de princípios da teoria de jogo e metodologias de machine learning aplicados ao contexto de formular estratégias ótimas para jogos está a angariar interesse por parte de uma porção crescentemente significativa da comunidade científica, tornando-se o jogo do Poker num candidato de estudo popular devido à sua natureza de informação imperfeita. Avanços nesta área possuem vastas aplicações em cenários do mundo real, e a área de investigação de inteligência artificial demonstra que o interesse relativo a este objeto de estudo está longe de desaparecer, com investigadores do Facebook e Carnegie Mellon a apresentar, em 2019, o primeiro agente de jogo autónomo de Poker provado como ganhador num cenário com múltiplos jogadores, uma conquista relativamente à anterior especificação do estado da arte, que fora desenvolvida para jogos de apenas 2 jogadores. Este estudo pretende explorar as características de jogos estocásticos de informação imperfeita, recolhendo informação acerca dos avanços nas metodologias disponibilizados por parte de investigadores de forma a desenvolver um agente autónomo de jogo que se pretende inserir na classificação de "utility-maximizing decision-maker".
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
2021-03-26T11:40:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/17674
TID:202551229
url http://hdl.handle.net/10400.22/17674
identifier_str_mv TID:202551229
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131463364378624