Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/102944 |
Resumo: | Dissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e Tecnologia |
id |
RCAP_4f0d7f49ce407d2ef277bb314b900b44 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/102944 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicasConvergence of finite difference methods to hyperbolic conservation lawsMétodos numéricosLeis de conservaçãoEquações derivadas parciaisConvergênciaProblemas não linearesNumerical methodsConservation lawsPartial differential equationsConvergenceNon-linear problemsDissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e TecnologiaNesta dissertação estudaremos a convergência de métodos de diferenças finitas para leis de conservação hiperbólicas, isto é, equações diferenciais de derivadas parciais de primeira ordem do tipo hiperbólico. Estas equações surgem associadas a vários modelos relacionados com problemas físicos, e em particular, ao problema de carregamento de veículos elétricos. Primeiro, começamos por deduzir a equação associada a estes problemas e apresentamos alguns resultados de existência e unicidade de solução (no sentido clássico). Nesse sentido, percebemos que existia a necessidade de criar um conceito de solução com uma regularidade mais fraca: a solução fraca. Assim, também para este caso são apresentados resultados de existência e unicidade, introduzindo as condições de entropia. Na segunda parte desta dissertação, são explorados métodos numéricos para aproximar a solução deste tipo de equações (na sua formulação fraca). Assim, começamos por fazer uma revisão de conceitos numéricos válidos para o caso linear, tais como a estabilidade, a consistência e a convergência. De seguida, é dado particular foco a problemas em que o fluxo é não linear. Neste caso, são redefinidos vários conceitos e terminamos com um resultado que nos estabelece a convergência (em certo sentido) para essa classe de métodos numéricos. Por fim, no último capítulo fazemos algumas simulações numéricas aplicando conhecimentos teóricos que estudámos e desenvolvemos ao longo do trabalho e analisamos os seus resultados.In this dissertation, we will study the convergence of finite difference methods for hyperbolic conservation laws, which are first-order partial-derivative differential equations of the hyperbolic type. These equations arise associated with several models related to physical problems,in particular, the charging electric vehicles problem. To begin with, we start by deducing the equation associated with these problems and present some results of existence and uniqueness of the solution (in the classical sense). In this sense, we realized it was necessary to create a new concept of solution that had weaker regularity: the weak solution. For this kind of solutions, it is presented existence and uniqueness results, therefore introducing entropy conditions. In the second part of this dissertation, we explore numerical methods of finite differences to approximate the solution of this type of equation (in their weak formulation). This way, we start by reviewing valid numerical concepts for the linear case, such as stability, consistency, and convergence. Then, we focus on problems in which the flow is nonlinear. In this case, we start by redefining several concepts and finish this part, presenting a result that establishes the convergence (in a sense) for this class of numerical methods. Finally, in the last chapter, we do some numerical simulations applying theoretical knowledge that we have studied and developed throughout this paper and analyze their results.2022-07-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10316/102944http://hdl.handle.net/10316/102944TID:203079965porMarques, Ana Carolina Piresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-10-19T20:31:46Zoai:estudogeral.uc.pt:10316/102944Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:19:50.191111Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas Convergence of finite difference methods to hyperbolic conservation laws |
title |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas |
spellingShingle |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas Marques, Ana Carolina Pires Métodos numéricos Leis de conservação Equações derivadas parciais Convergência Problemas não lineares Numerical methods Conservation laws Partial differential equations Convergence Non-linear problems |
title_short |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas |
title_full |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas |
title_fullStr |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas |
title_full_unstemmed |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas |
title_sort |
Convergência de métodos de diferenças finitas para leis de conservação hiperbólicas |
author |
Marques, Ana Carolina Pires |
author_facet |
Marques, Ana Carolina Pires |
author_role |
author |
dc.contributor.author.fl_str_mv |
Marques, Ana Carolina Pires |
dc.subject.por.fl_str_mv |
Métodos numéricos Leis de conservação Equações derivadas parciais Convergência Problemas não lineares Numerical methods Conservation laws Partial differential equations Convergence Non-linear problems |
topic |
Métodos numéricos Leis de conservação Equações derivadas parciais Convergência Problemas não lineares Numerical methods Conservation laws Partial differential equations Convergence Non-linear problems |
description |
Dissertação de Mestrado em Matemática apresentada à Faculdade de Ciências e Tecnologia |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/102944 http://hdl.handle.net/10316/102944 TID:203079965 |
url |
http://hdl.handle.net/10316/102944 |
identifier_str_mv |
TID:203079965 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134092158042112 |