Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape

Detalhes bibliográficos
Autor(a) principal: Oldenburg, Fynn
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/161184
Resumo: As advertisers increasingly shift their budgets toward digital advertising, forecasting ad vertising costs is essential for making budget plans to optimize marketing campaign re turns. In this paper, we perform a comprehensive study using a variety of time-series forecasting methods to predict daily average cost-per-click in the online advertising mar ket. We show that forecasting advertising costs would benefit from multivariate models using covariates from competitors’ cost-per-click development identified through time series clustering. We further interpret the results by analyzing feature importance and temporal attention. Finally, we show that our approach holds several advantages over, first, models that individual advertisers might build based on their own data, and second, existing tools from Google.
id RCAP_50468151026194fbb4f84315e4f6e371
oai_identifier_str oai:run.unl.pt:10362/161184
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscapeDigital marketingOnline advertisementTime series forecastingTime series clusteringDeep learningTemporal fusion transformerDomínio/Área Científica::Ciências Sociais::Economia e GestãoAs advertisers increasingly shift their budgets toward digital advertising, forecasting ad vertising costs is essential for making budget plans to optimize marketing campaign re turns. In this paper, we perform a comprehensive study using a variety of time-series forecasting methods to predict daily average cost-per-click in the online advertising mar ket. We show that forecasting advertising costs would benefit from multivariate models using covariates from competitors’ cost-per-click development identified through time series clustering. We further interpret the results by analyzing feature importance and temporal attention. Finally, we show that our approach holds several advantages over, first, models that individual advertisers might build based on their own data, and second, existing tools from Google.Han, QiweiRUNOldenburg, Fynn2023-12-13T10:22:22Z2022-12-152022-12-152022-12-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/161184TID:203317629enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:01Zoai:run.unl.pt:10362/161184Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:24.818620Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
title Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
spellingShingle Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
Oldenburg, Fynn
Digital marketing
Online advertisement
Time series forecasting
Time series clustering
Deep learning
Temporal fusion transformer
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
title_full Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
title_fullStr Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
title_full_unstemmed Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
title_sort Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
author Oldenburg, Fynn
author_facet Oldenburg, Fynn
author_role author
dc.contributor.none.fl_str_mv Han, Qiwei
RUN
dc.contributor.author.fl_str_mv Oldenburg, Fynn
dc.subject.por.fl_str_mv Digital marketing
Online advertisement
Time series forecasting
Time series clustering
Deep learning
Temporal fusion transformer
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Digital marketing
Online advertisement
Time series forecasting
Time series clustering
Deep learning
Temporal fusion transformer
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description As advertisers increasingly shift their budgets toward digital advertising, forecasting ad vertising costs is essential for making budget plans to optimize marketing campaign re turns. In this paper, we perform a comprehensive study using a variety of time-series forecasting methods to predict daily average cost-per-click in the online advertising mar ket. We show that forecasting advertising costs would benefit from multivariate models using covariates from competitors’ cost-per-click development identified through time series clustering. We further interpret the results by analyzing feature importance and temporal attention. Finally, we show that our approach holds several advantages over, first, models that individual advertisers might build based on their own data, and second, existing tools from Google.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-15
2022-12-15
2022-12-15T00:00:00Z
2023-12-13T10:22:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/161184
TID:203317629
url http://hdl.handle.net/10362/161184
identifier_str_mv TID:203317629
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138165145993216