Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/161184 |
Resumo: | As advertisers increasingly shift their budgets toward digital advertising, forecasting ad vertising costs is essential for making budget plans to optimize marketing campaign re turns. In this paper, we perform a comprehensive study using a variety of time-series forecasting methods to predict daily average cost-per-click in the online advertising mar ket. We show that forecasting advertising costs would benefit from multivariate models using covariates from competitors’ cost-per-click development identified through time series clustering. We further interpret the results by analyzing feature importance and temporal attention. Finally, we show that our approach holds several advantages over, first, models that individual advertisers might build based on their own data, and second, existing tools from Google. |
id |
RCAP_50468151026194fbb4f84315e4f6e371 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/161184 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscapeDigital marketingOnline advertisementTime series forecastingTime series clusteringDeep learningTemporal fusion transformerDomínio/Área Científica::Ciências Sociais::Economia e GestãoAs advertisers increasingly shift their budgets toward digital advertising, forecasting ad vertising costs is essential for making budget plans to optimize marketing campaign re turns. In this paper, we perform a comprehensive study using a variety of time-series forecasting methods to predict daily average cost-per-click in the online advertising mar ket. We show that forecasting advertising costs would benefit from multivariate models using covariates from competitors’ cost-per-click development identified through time series clustering. We further interpret the results by analyzing feature importance and temporal attention. Finally, we show that our approach holds several advantages over, first, models that individual advertisers might build based on their own data, and second, existing tools from Google.Han, QiweiRUNOldenburg, Fynn2023-12-13T10:22:22Z2022-12-152022-12-152022-12-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/161184TID:203317629enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:44:01Zoai:run.unl.pt:10362/161184Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:24.818620Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
title |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
spellingShingle |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape Oldenburg, Fynn Digital marketing Online advertisement Time series forecasting Time series clustering Deep learning Temporal fusion transformer Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
title_full |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
title_fullStr |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
title_full_unstemmed |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
title_sort |
Forecasting online advertising costs: interpretable deep learning of the competitive bidding landscape |
author |
Oldenburg, Fynn |
author_facet |
Oldenburg, Fynn |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
dc.contributor.author.fl_str_mv |
Oldenburg, Fynn |
dc.subject.por.fl_str_mv |
Digital marketing Online advertisement Time series forecasting Time series clustering Deep learning Temporal fusion transformer Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Digital marketing Online advertisement Time series forecasting Time series clustering Deep learning Temporal fusion transformer Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
As advertisers increasingly shift their budgets toward digital advertising, forecasting ad vertising costs is essential for making budget plans to optimize marketing campaign re turns. In this paper, we perform a comprehensive study using a variety of time-series forecasting methods to predict daily average cost-per-click in the online advertising mar ket. We show that forecasting advertising costs would benefit from multivariate models using covariates from competitors’ cost-per-click development identified through time series clustering. We further interpret the results by analyzing feature importance and temporal attention. Finally, we show that our approach holds several advantages over, first, models that individual advertisers might build based on their own data, and second, existing tools from Google. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-15 2022-12-15 2022-12-15T00:00:00Z 2023-12-13T10:22:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/161184 TID:203317629 |
url |
http://hdl.handle.net/10362/161184 |
identifier_str_mv |
TID:203317629 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138165145993216 |