Online advertising revenue forecasting: an interpretable deep learning approach

Detalhes bibliográficos
Autor(a) principal: Würfel, Max
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/122676
Resumo: This paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic.
id RCAP_e27306fb20ed124d6fc50a2360e51b57
oai_identifier_str oai:run.unl.pt:10362/122676
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Online advertising revenue forecasting: an interpretable deep learning approachDeep learningTime series forecastingInterpretabilityOnline marketingDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic.Han, QiweiRUNWürfel, Max2021-08-18T10:50:20Z2021-01-132021-01-042021-01-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/122676TID:202740595enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:04:14Zoai:run.unl.pt:10362/122676Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:49.566038Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Online advertising revenue forecasting: an interpretable deep learning approach
title Online advertising revenue forecasting: an interpretable deep learning approach
spellingShingle Online advertising revenue forecasting: an interpretable deep learning approach
Würfel, Max
Deep learning
Time series forecasting
Interpretability
Online marketing
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
title_short Online advertising revenue forecasting: an interpretable deep learning approach
title_full Online advertising revenue forecasting: an interpretable deep learning approach
title_fullStr Online advertising revenue forecasting: an interpretable deep learning approach
title_full_unstemmed Online advertising revenue forecasting: an interpretable deep learning approach
title_sort Online advertising revenue forecasting: an interpretable deep learning approach
author Würfel, Max
author_facet Würfel, Max
author_role author
dc.contributor.none.fl_str_mv Han, Qiwei
RUN
dc.contributor.author.fl_str_mv Würfel, Max
dc.subject.por.fl_str_mv Deep learning
Time series forecasting
Interpretability
Online marketing
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
topic Deep learning
Time series forecasting
Interpretability
Online marketing
Domínio/Área Científica::Ciências Sociais::Economia e Gestão
description This paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-18T10:50:20Z
2021-01-13
2021-01-04
2021-01-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/122676
TID:202740595
url http://hdl.handle.net/10362/122676
identifier_str_mv TID:202740595
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138055076970496