Online advertising revenue forecasting: an interpretable deep learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/122676 |
Resumo: | This paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic. |
id |
RCAP_e27306fb20ed124d6fc50a2360e51b57 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/122676 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Online advertising revenue forecasting: an interpretable deep learning approachDeep learningTime series forecastingInterpretabilityOnline marketingDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic.Han, QiweiRUNWürfel, Max2021-08-18T10:50:20Z2021-01-132021-01-042021-01-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/122676TID:202740595enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:04:14Zoai:run.unl.pt:10362/122676Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:49.566038Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Online advertising revenue forecasting: an interpretable deep learning approach |
title |
Online advertising revenue forecasting: an interpretable deep learning approach |
spellingShingle |
Online advertising revenue forecasting: an interpretable deep learning approach Würfel, Max Deep learning Time series forecasting Interpretability Online marketing Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Online advertising revenue forecasting: an interpretable deep learning approach |
title_full |
Online advertising revenue forecasting: an interpretable deep learning approach |
title_fullStr |
Online advertising revenue forecasting: an interpretable deep learning approach |
title_full_unstemmed |
Online advertising revenue forecasting: an interpretable deep learning approach |
title_sort |
Online advertising revenue forecasting: an interpretable deep learning approach |
author |
Würfel, Max |
author_facet |
Würfel, Max |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
dc.contributor.author.fl_str_mv |
Würfel, Max |
dc.subject.por.fl_str_mv |
Deep learning Time series forecasting Interpretability Online marketing Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Deep learning Time series forecasting Interpretability Online marketing Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This paper investigates whether publishers’ Google AdSense online advertising revenues can be predicted from peekd’s proprietary database using deep learning methodologies. Peekd is a Berlin (Germany) based data science company, which primarily provides e Retailers with sales and shopper intelligence. I find that using a single deep learning model, AdSense revenues can be predicted across publishers. Additionally, using unsupervised clustering, publishers were grouped and related time series were fed as covariates when making predictions. No performance improvement was found in relation with this technique. Finally, I find that in the short-term, publishers’ AdSense revenues embed similar temporal patterns as web traffic. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-18T10:50:20Z 2021-01-13 2021-01-04 2021-01-13T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/122676 TID:202740595 |
url |
http://hdl.handle.net/10362/122676 |
identifier_str_mv |
TID:202740595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138055076970496 |