Aspects of Algebraic Algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/43899 https://doi.org/10.23638/LMCS-13(3:4)2017 |
Resumo: | In this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces. |
id |
RCAP_5061f0a576740f9e6f08333ee76da047 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/43899 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Aspects of Algebraic AlgebrasIn this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces.Logical Methods in Computer Science e. V.2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43899http://hdl.handle.net/10316/43899https://doi.org/10.23638/LMCS-13(3:4)2017enghttps://arxiv.org/pdf/1701.03778.pdfHofmann, DirkSousa, Lurdesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:13:28Zoai:estudogeral.uc.pt:10316/43899Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:29.796934Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Aspects of Algebraic Algebras |
title |
Aspects of Algebraic Algebras |
spellingShingle |
Aspects of Algebraic Algebras Hofmann, Dirk |
title_short |
Aspects of Algebraic Algebras |
title_full |
Aspects of Algebraic Algebras |
title_fullStr |
Aspects of Algebraic Algebras |
title_full_unstemmed |
Aspects of Algebraic Algebras |
title_sort |
Aspects of Algebraic Algebras |
author |
Hofmann, Dirk |
author_facet |
Hofmann, Dirk Sousa, Lurdes |
author_role |
author |
author2 |
Sousa, Lurdes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hofmann, Dirk Sousa, Lurdes |
description |
In this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/43899 http://hdl.handle.net/10316/43899 https://doi.org/10.23638/LMCS-13(3:4)2017 |
url |
http://hdl.handle.net/10316/43899 https://doi.org/10.23638/LMCS-13(3:4)2017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://arxiv.org/pdf/1701.03778.pdf |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Logical Methods in Computer Science e. V. |
publisher.none.fl_str_mv |
Logical Methods in Computer Science e. V. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821609705472 |