Aspects of Algebraic Algebras

Detalhes bibliográficos
Autor(a) principal: Hofmann, Dirk
Data de Publicação: 2017
Outros Autores: Sousa, Lurdes
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/43899
https://doi.org/10.23638/LMCS-13(3:4)2017
Resumo: In this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces.
id RCAP_5061f0a576740f9e6f08333ee76da047
oai_identifier_str oai:estudogeral.uc.pt:10316/43899
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Aspects of Algebraic AlgebrasIn this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces.Logical Methods in Computer Science e. V.2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43899http://hdl.handle.net/10316/43899https://doi.org/10.23638/LMCS-13(3:4)2017enghttps://arxiv.org/pdf/1701.03778.pdfHofmann, DirkSousa, Lurdesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:13:28Zoai:estudogeral.uc.pt:10316/43899Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:29.796934Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Aspects of Algebraic Algebras
title Aspects of Algebraic Algebras
spellingShingle Aspects of Algebraic Algebras
Hofmann, Dirk
title_short Aspects of Algebraic Algebras
title_full Aspects of Algebraic Algebras
title_fullStr Aspects of Algebraic Algebras
title_full_unstemmed Aspects of Algebraic Algebras
title_sort Aspects of Algebraic Algebras
author Hofmann, Dirk
author_facet Hofmann, Dirk
Sousa, Lurdes
author_role author
author2 Sousa, Lurdes
author2_role author
dc.contributor.author.fl_str_mv Hofmann, Dirk
Sousa, Lurdes
description In this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg–Moore category, for a Kock-Zöberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/43899
http://hdl.handle.net/10316/43899
https://doi.org/10.23638/LMCS-13(3:4)2017
url http://hdl.handle.net/10316/43899
https://doi.org/10.23638/LMCS-13(3:4)2017
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://arxiv.org/pdf/1701.03778.pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Logical Methods in Computer Science e. V.
publisher.none.fl_str_mv Logical Methods in Computer Science e. V.
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133821609705472