Aspects of algebraic algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/18668 |
Resumo: | In this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg--Moore category, for a Kock-Z\"oberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces. |
id |
RCAP_896deed0b60662d152ac2c3726cbf81c |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/18668 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Aspects of algebraic algebrasKock-Z\"oberlein monadFilter monadContinuous latticeAlgebraic latticeWeighted (co)limitIdempotent split completionIn this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg--Moore category, for a Kock-Z\"oberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces.International Federation of Computational Logic2017-10-31T10:47:25Z2017-07-10T00:00:00Z2017-07-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18668eng1860-597410.23638/LMCS-13(3:4)2017Hofmann, DirkSousa, Lurdesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:36:10Zoai:ria.ua.pt:10773/18668Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:53:36.833414Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Aspects of algebraic algebras |
title |
Aspects of algebraic algebras |
spellingShingle |
Aspects of algebraic algebras Hofmann, Dirk Kock-Z\"oberlein monad Filter monad Continuous lattice Algebraic lattice Weighted (co)limit Idempotent split completion |
title_short |
Aspects of algebraic algebras |
title_full |
Aspects of algebraic algebras |
title_fullStr |
Aspects of algebraic algebras |
title_full_unstemmed |
Aspects of algebraic algebras |
title_sort |
Aspects of algebraic algebras |
author |
Hofmann, Dirk |
author_facet |
Hofmann, Dirk Sousa, Lurdes |
author_role |
author |
author2 |
Sousa, Lurdes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Hofmann, Dirk Sousa, Lurdes |
dc.subject.por.fl_str_mv |
Kock-Z\"oberlein monad Filter monad Continuous lattice Algebraic lattice Weighted (co)limit Idempotent split completion |
topic |
Kock-Z\"oberlein monad Filter monad Continuous lattice Algebraic lattice Weighted (co)limit Idempotent split completion |
description |
In this paper we investigate important categories lying strictly between the Kleisli category and the Eilenberg--Moore category, for a Kock-Z\"oberlein monad on an order-enriched category. Firstly, we give a characterisation of free algebras in the spirit of domain theory. Secondly, we study the existence of weighted (co)limits, both on the abstract level and for specific categories of domain theory like the category of algebraic lattices. Finally, we apply these results to give a description of the idempotent split completion of the Kleisli category of the filter monad on the category of topological spaces. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-31T10:47:25Z 2017-07-10T00:00:00Z 2017-07-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18668 |
url |
http://hdl.handle.net/10773/18668 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1860-5974 10.23638/LMCS-13(3:4)2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Federation of Computational Logic |
publisher.none.fl_str_mv |
International Federation of Computational Logic |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137587252690944 |