Box-Cox Transformations and Bias Reduction in Extreme Value Theory

Detalhes bibliográficos
Autor(a) principal: Henriques-Rodrigues, Lígia
Data de Publicação: 2022
Outros Autores: Gomes, M. Ivette
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/32931
https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763
https://doi.org/10.1155/2022/3854763
Resumo: The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies.
id RCAP_5179aacb9fb8c5779489b6ecdd2398b5
oai_identifier_str oai:dspace.uevora.pt:10174/32931
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Box-Cox Transformations and Bias Reduction in Extreme Value TheoryThe Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies.Hindawi2022-12-28T15:34:19Z2022-12-282022-03-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/32931https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763http://hdl.handle.net/10174/32931https://doi.org/10.1155/2022/3854763enghttps://www.hindawi.com/journals/cmm/2022/3854763/Computational and Mathematical Methodsligiahr@uevora.ptivette.gomes@fc.ul.pt336Henriques-Rodrigues, LígiaGomes, M. Ivetteinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:34:16Zoai:dspace.uevora.pt:10174/32931Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:21:54.208721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Box-Cox Transformations and Bias Reduction in Extreme Value Theory
title Box-Cox Transformations and Bias Reduction in Extreme Value Theory
spellingShingle Box-Cox Transformations and Bias Reduction in Extreme Value Theory
Henriques-Rodrigues, Lígia
title_short Box-Cox Transformations and Bias Reduction in Extreme Value Theory
title_full Box-Cox Transformations and Bias Reduction in Extreme Value Theory
title_fullStr Box-Cox Transformations and Bias Reduction in Extreme Value Theory
title_full_unstemmed Box-Cox Transformations and Bias Reduction in Extreme Value Theory
title_sort Box-Cox Transformations and Bias Reduction in Extreme Value Theory
author Henriques-Rodrigues, Lígia
author_facet Henriques-Rodrigues, Lígia
Gomes, M. Ivette
author_role author
author2 Gomes, M. Ivette
author2_role author
dc.contributor.author.fl_str_mv Henriques-Rodrigues, Lígia
Gomes, M. Ivette
description The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-28T15:34:19Z
2022-12-28
2022-03-10T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/32931
https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763
http://hdl.handle.net/10174/32931
https://doi.org/10.1155/2022/3854763
url http://hdl.handle.net/10174/32931
https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763
https://doi.org/10.1155/2022/3854763
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.hindawi.com/journals/cmm/2022/3854763/
Computational and Mathematical Methods
ligiahr@uevora.pt
ivette.gomes@fc.ul.pt
336
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Hindawi
publisher.none.fl_str_mv Hindawi
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136700631351296