Box-Cox Transformations and Bias Reduction in Extreme Value Theory
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/32931 https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763 https://doi.org/10.1155/2022/3854763 |
Resumo: | The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies. |
id |
RCAP_5179aacb9fb8c5779489b6ecdd2398b5 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/32931 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Box-Cox Transformations and Bias Reduction in Extreme Value TheoryThe Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies.Hindawi2022-12-28T15:34:19Z2022-12-282022-03-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/32931https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763http://hdl.handle.net/10174/32931https://doi.org/10.1155/2022/3854763enghttps://www.hindawi.com/journals/cmm/2022/3854763/Computational and Mathematical Methodsligiahr@uevora.ptivette.gomes@fc.ul.pt336Henriques-Rodrigues, LígiaGomes, M. Ivetteinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:34:16Zoai:dspace.uevora.pt:10174/32931Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:21:54.208721Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
title |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
spellingShingle |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory Henriques-Rodrigues, Lígia |
title_short |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
title_full |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
title_fullStr |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
title_full_unstemmed |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
title_sort |
Box-Cox Transformations and Bias Reduction in Extreme Value Theory |
author |
Henriques-Rodrigues, Lígia |
author_facet |
Henriques-Rodrigues, Lígia Gomes, M. Ivette |
author_role |
author |
author2 |
Gomes, M. Ivette |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Henriques-Rodrigues, Lígia Gomes, M. Ivette |
description |
The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index (EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples through small-scale Monte Carlo simulation studies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-28T15:34:19Z 2022-12-28 2022-03-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/32931 https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763 http://hdl.handle.net/10174/32931 https://doi.org/10.1155/2022/3854763 |
url |
http://hdl.handle.net/10174/32931 https://doi.org/Lígia Henriques-Rodrigues, M. Ivette Gomes, "Box-Cox Transformations and Bias Reduction in Extreme Value Theory", Computational and Mathematical Methods, vol. 2022, Article ID 3854763, 15 pages, 2022. https://doi.org/10.1155/2022/3854763 https://doi.org/10.1155/2022/3854763 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.hindawi.com/journals/cmm/2022/3854763/ Computational and Mathematical Methods ligiahr@uevora.pt ivette.gomes@fc.ul.pt 336 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Hindawi |
publisher.none.fl_str_mv |
Hindawi |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136700631351296 |