Modelos Box-Cox elípticos

Detalhes bibliográficos
Autor(a) principal: Morán Vásquez, Raúl Alejandro
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-113123/
Resumo: Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reais
id USP_64f2a95e29504666b67c48d762bb5caf
oai_identifier_str oai:teses.usp.br:tde-20230727-113123
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Modelos Box-Cox elípticosnot availableAnálise MultivariadaModelos (Análise Multivariada)Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reaisPositive multivariate data are often encountered in several study areas. The multivariate Box-Cox transformation is a methodology usually employed to model this type of data. This approach has some drawbacks, one of them being the lack of interpretation of the parameters in terms of the vector of the original variables. ln this work we study the Box-Cox elliptical class of distributions, which is an alternative strategy for modeling multivariate positive data through the multivariate Box-Cox transformation. We define this class of models through an extension of the multivariate Box-Cox transformation, involving a new class of distributions called truncated elliptical class of distributions, which we also study in this work. The Box-Cox elliptical class of distributions has as particular cases the log-elliptical and Box-Cox symmetric classes of distributions. The parameters that index this new class of distributions are interpretable in terms of characteristics of the vector of the original variables, which allows the modeling of multivariate positive data, marginally asymmetric in the presence of outliers. Furthermore, some parameters are related to quantiles of the marginal distributions, making this class attractive for regression modeling. To tackle the parameter estimation problem, we propose the maximum likelihood method. We study theoretical and computational aspects associated with this methodology, whose adequacy is verified through simulation studies. Subsequently, we define a new class of regression models, the Box-Cox elliptical linear regression models, which have as particular cases the log-elliptical and Box-Cox symmetric linear regression models, that are not yet available in the literature. We describe the maximum likelihood method applied to these models and propose diagnostic methods to evaluate the goodness of fit in the multivariate log-normal and log-t linear regression models.We present applications of the Box-Cox elliptical distributions and Box-Cox elliptical linear regression models to real dataBiblioteca Digitais de Teses e Dissertações da USPFerrari, Sílvia Lopes de PaulaMorán Vásquez, Raúl Alejandro2017-04-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-113123/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-16T17:55:02Zoai:teses.usp.br:tde-20230727-113123Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T17:55:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Modelos Box-Cox elípticos
not available
title Modelos Box-Cox elípticos
spellingShingle Modelos Box-Cox elípticos
Morán Vásquez, Raúl Alejandro
Análise Multivariada
Modelos (Análise Multivariada)
title_short Modelos Box-Cox elípticos
title_full Modelos Box-Cox elípticos
title_fullStr Modelos Box-Cox elípticos
title_full_unstemmed Modelos Box-Cox elípticos
title_sort Modelos Box-Cox elípticos
author Morán Vásquez, Raúl Alejandro
author_facet Morán Vásquez, Raúl Alejandro
author_role author
dc.contributor.none.fl_str_mv Ferrari, Sílvia Lopes de Paula
dc.contributor.author.fl_str_mv Morán Vásquez, Raúl Alejandro
dc.subject.por.fl_str_mv Análise Multivariada
Modelos (Análise Multivariada)
topic Análise Multivariada
Modelos (Análise Multivariada)
description Dados positivos multivariados aparecem com frequência em diversas áreas de estudo. A transformação de Box-Cox multivariada é uma metodologia habitualmente utilizada para modelar esse tipo de dados. Essa abordagem apresenta algumas desvantagens, como por exemplo a falta de interpretação dos parâmetros em termos de características do vetor de variáveis originais. Neste trabalho estudamos a classe de distribuições Box-Cox elípticas, que é uma alternativa para a modelagem de dados positivos multivariados através da transformação de Box-Cox multivariada. Definimos essa classe através de uma extensão da transformação de Box-Cox multivariada, e envolvendo uma nova classe de distribuições que denominamos de classe de distribuições elípticas truncadas, que também estudamos neste trabalho. A classe de distribuições Box-Cox elípticas tem como casos particulares as classes de distribuições log-elípticas e Box-Cox simétricas. Os parâmetros que conformam esta nova classe são interpretáveis em termos de características do vetor de variáveis originais, o que permite modelar dados positivos multivariados, marginalmente assimétricos e com presença de observações discrepantes. Além disso, alguns parâmetros estão relacionados a quantis das distribuições marginais, tornando esta classe atrativa para modelagem de regressão. Para abordar o problema de estimação dos parâmetros adotamos o método de máxima verossimilhança. Estudamos aspectos teóricos e computacionais associados a essa metodologia, cuja adequação é verificada por meio de estudos de simulação. Posteriormente, desenvolvemos modelos de regressão lineares Box-Cox elípticos, que têm como casos particulares os modelos de regressão lineares log-elípticos e Box-Cox simétricos, que, por sua vez, também constituem uma nova contribuição à literatura estatística. Descrevemos o método de máxima verossimilhança aplicado a estes modelos e propomos métodos de diagnóstico para avaliar ajustes dos modelos de regressão lineares log-normal e log-t: multivariados. Apresentamos aplicações das distribuições Box-Cox elípticas e dos modelos de regressão lineares Box-Cox elípticos a dados reais
publishDate 2017
dc.date.none.fl_str_mv 2017-04-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-113123/
url https://teses.usp.br/teses/disponiveis/45/45133/tde-20230727-113123/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257218446000128