Another note on effective descent morphisms of topological spaces and relational algebras

Detalhes bibliográficos
Autor(a) principal: Clementino, Maria Manuel
Data de Publicação: 2020
Outros Autores: Janelidze, George
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89423
https://doi.org/10.1016/j.topol.2019.106961
Resumo: We make three independent observations on characterizing effective descent morphisms in the category of topological spaces. The first of them proposes a new modification of known characterizations of effective descent morphisms of general spaces, while the other two are devoted to locally finite and Hausdorff spaces, respectively. The Hausdorff case is considered, as far as we could, at the more general level of relational algebras in the sense of M. Barr.
id RCAP_520796a5539dff6382034062dbc85408
oai_identifier_str oai:estudogeral.uc.pt:10316/89423
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Another note on effective descent morphisms of topological spaces and relational algebrasMonad; Effective descent morphism; Relational algebra; Ultrafilter monad; Locally finite space; Hausdorff space; Alexandrov spaceWe make three independent observations on characterizing effective descent morphisms in the category of topological spaces. The first of them proposes a new modification of known characterizations of effective descent morphisms of general spaces, while the other two are devoted to locally finite and Hausdorff spaces, respectively. The Hausdorff case is considered, as far as we could, at the more general level of relational algebras in the sense of M. Barr.Elsevier2020-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89423http://hdl.handle.net/10316/89423https://doi.org/10.1016/j.topol.2019.106961enghttps://www.sciencedirect.com/science/article/pii/S0166864119303669Clementino, Maria ManuelJanelidze, Georgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:31:11Zoai:estudogeral.uc.pt:10316/89423Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:44.725437Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Another note on effective descent morphisms of topological spaces and relational algebras
title Another note on effective descent morphisms of topological spaces and relational algebras
spellingShingle Another note on effective descent morphisms of topological spaces and relational algebras
Clementino, Maria Manuel
Monad; Effective descent morphism; Relational algebra; Ultrafilter monad; Locally finite space; Hausdorff space; Alexandrov space
title_short Another note on effective descent morphisms of topological spaces and relational algebras
title_full Another note on effective descent morphisms of topological spaces and relational algebras
title_fullStr Another note on effective descent morphisms of topological spaces and relational algebras
title_full_unstemmed Another note on effective descent morphisms of topological spaces and relational algebras
title_sort Another note on effective descent morphisms of topological spaces and relational algebras
author Clementino, Maria Manuel
author_facet Clementino, Maria Manuel
Janelidze, George
author_role author
author2 Janelidze, George
author2_role author
dc.contributor.author.fl_str_mv Clementino, Maria Manuel
Janelidze, George
dc.subject.por.fl_str_mv Monad; Effective descent morphism; Relational algebra; Ultrafilter monad; Locally finite space; Hausdorff space; Alexandrov space
topic Monad; Effective descent morphism; Relational algebra; Ultrafilter monad; Locally finite space; Hausdorff space; Alexandrov space
description We make three independent observations on characterizing effective descent morphisms in the category of topological spaces. The first of them proposes a new modification of known characterizations of effective descent morphisms of general spaces, while the other two are devoted to locally finite and Hausdorff spaces, respectively. The Hausdorff case is considered, as far as we could, at the more general level of relational algebras in the sense of M. Barr.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89423
http://hdl.handle.net/10316/89423
https://doi.org/10.1016/j.topol.2019.106961
url http://hdl.handle.net/10316/89423
https://doi.org/10.1016/j.topol.2019.106961
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0166864119303669
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992280129536