Real-Time Step Detection Using Unconstrained Smartphone

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Gonçalo Miguel Grenho
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/106544
Resumo: Nowadays smartphones are carrying more and more sensors among which are inertial sensors. These devices provide information about the movement and forces acting on the device, but they can also provide information about the movement of the user. Step detection is at the core of many smartphone applications such as indoor location, virtual reality, health and activity monitoring, and some of these require high levels of precision. Current state of the art step detection methods rely heavily in the prediction of the movements performed by the user and the smartphone or on methods of activity recognition for parameter tuning. These methods are limited by the number of situations the researchers can predict and do not consider false positive situations which occur in daily living such as jumps or stationary movements, which in turn will contribute to lower performances. In this thesis, a novel unconstrained smartphone step detection method is proposed using Convolutional Neural Networks. The model utilizes the data from the accelerometer and gyroscope of the smartphone for step detection. For the training of the model, a data set containing step and false step situations was built with a total of 4 smartphone placements, 5 step activities and 2 false step activities. The model was tested using the data from a volunteer which it has not previously seen. The proposed model achieved an overall recall of 89.87% and an overall precision of 87.90%, while being able to distinguish step and non-step situations. The model also revealed little difference between the performance in different smartphone placements, indicating a strong capability towards unconstrained use. The proposed solution demonstrates more versatility than state of the art alternatives, by presenting comparable results without the need of parameter tuning or adjustments for the smartphone use case, potentially allowing for better performances in free living scenarios.
id RCAP_521fcb58f1a96854e7d87f34301ec2bb
oai_identifier_str oai:run.unl.pt:10362/106544
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Real-Time Step Detection Using Unconstrained SmartphoneStep DetectionSmartphone SensorsConvolutional Neural NetworksArtificial IntelligenceDeep LearningDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasNowadays smartphones are carrying more and more sensors among which are inertial sensors. These devices provide information about the movement and forces acting on the device, but they can also provide information about the movement of the user. Step detection is at the core of many smartphone applications such as indoor location, virtual reality, health and activity monitoring, and some of these require high levels of precision. Current state of the art step detection methods rely heavily in the prediction of the movements performed by the user and the smartphone or on methods of activity recognition for parameter tuning. These methods are limited by the number of situations the researchers can predict and do not consider false positive situations which occur in daily living such as jumps or stationary movements, which in turn will contribute to lower performances. In this thesis, a novel unconstrained smartphone step detection method is proposed using Convolutional Neural Networks. The model utilizes the data from the accelerometer and gyroscope of the smartphone for step detection. For the training of the model, a data set containing step and false step situations was built with a total of 4 smartphone placements, 5 step activities and 2 false step activities. The model was tested using the data from a volunteer which it has not previously seen. The proposed model achieved an overall recall of 89.87% and an overall precision of 87.90%, while being able to distinguish step and non-step situations. The model also revealed little difference between the performance in different smartphone placements, indicating a strong capability towards unconstrained use. The proposed solution demonstrates more versatility than state of the art alternatives, by presenting comparable results without the need of parameter tuning or adjustments for the smartphone use case, potentially allowing for better performances in free living scenarios.Gamboa, HugoRUNRodrigues, Gonçalo Miguel Grenho2020-11-03T14:51:40Z2020-0520202020-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/106544enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:51:27Zoai:run.unl.pt:10362/106544Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:40:44.135921Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Real-Time Step Detection Using Unconstrained Smartphone
title Real-Time Step Detection Using Unconstrained Smartphone
spellingShingle Real-Time Step Detection Using Unconstrained Smartphone
Rodrigues, Gonçalo Miguel Grenho
Step Detection
Smartphone Sensors
Convolutional Neural Networks
Artificial Intelligence
Deep Learning
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Real-Time Step Detection Using Unconstrained Smartphone
title_full Real-Time Step Detection Using Unconstrained Smartphone
title_fullStr Real-Time Step Detection Using Unconstrained Smartphone
title_full_unstemmed Real-Time Step Detection Using Unconstrained Smartphone
title_sort Real-Time Step Detection Using Unconstrained Smartphone
author Rodrigues, Gonçalo Miguel Grenho
author_facet Rodrigues, Gonçalo Miguel Grenho
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
RUN
dc.contributor.author.fl_str_mv Rodrigues, Gonçalo Miguel Grenho
dc.subject.por.fl_str_mv Step Detection
Smartphone Sensors
Convolutional Neural Networks
Artificial Intelligence
Deep Learning
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Step Detection
Smartphone Sensors
Convolutional Neural Networks
Artificial Intelligence
Deep Learning
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Nowadays smartphones are carrying more and more sensors among which are inertial sensors. These devices provide information about the movement and forces acting on the device, but they can also provide information about the movement of the user. Step detection is at the core of many smartphone applications such as indoor location, virtual reality, health and activity monitoring, and some of these require high levels of precision. Current state of the art step detection methods rely heavily in the prediction of the movements performed by the user and the smartphone or on methods of activity recognition for parameter tuning. These methods are limited by the number of situations the researchers can predict and do not consider false positive situations which occur in daily living such as jumps or stationary movements, which in turn will contribute to lower performances. In this thesis, a novel unconstrained smartphone step detection method is proposed using Convolutional Neural Networks. The model utilizes the data from the accelerometer and gyroscope of the smartphone for step detection. For the training of the model, a data set containing step and false step situations was built with a total of 4 smartphone placements, 5 step activities and 2 false step activities. The model was tested using the data from a volunteer which it has not previously seen. The proposed model achieved an overall recall of 89.87% and an overall precision of 87.90%, while being able to distinguish step and non-step situations. The model also revealed little difference between the performance in different smartphone placements, indicating a strong capability towards unconstrained use. The proposed solution demonstrates more versatility than state of the art alternatives, by presenting comparable results without the need of parameter tuning or adjustments for the smartphone use case, potentially allowing for better performances in free living scenarios.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-03T14:51:40Z
2020-05
2020
2020-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/106544
url http://hdl.handle.net/10362/106544
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138021521489920