Wild animals detection in Camera Trapping images: A Machine Learning approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/163579 |
Resumo: | Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_53ffbac1d4c8242f8adbeea7dd7cd6c5 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/163579 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Wild animals detection in Camera Trapping images: A Machine Learning approachCamera-trappingImage ProcessingDeep Convolutional Neural NetworksMachine learningSDG 8 - Decent work and economic growthSDG 15 - Life on landDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoProject Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceIn the field of wildlife conservation and research, Camera Trapping (CT) images have become invaluable tools. However, the sheer volume of images, often captured in challenging conditions, presents a significant obstacle to accurately identifying animals. This Thesis proposes to develop an effective solution for identifying animals in CT images through the use of Machine Learning (ML) algorithms, within the context of the “Sistema de Armadilhagem Fotográfica e Análise Inteligente” (SAFArI) project. It addresses the unique challenges of processing images from the wild, by incorporating a comprehensive review of existing literature, with a specific emphasis on identifying the most suitable ML methodologies for analysing CT images. Based on this review, extensive exploration of various pre-existing object detection models, such as Faster Region-Based Convolutional Neural Network (Faster R-CNN) and You Only Look Once (YOLO), is conducted, considering the unique features of each model, and incorporating movement detection methods like Background Subtraction (BS). Benchmarking becomes essential as this study seeks to evaluate the performance of each model, providing valuable insights into their efficacy. It is within these benchmarks that a path toward a custom-tailored architecture for the SAFArI project emerges. It is vital that the developed model not only demonstrates effectiveness but also integrates seamlessly with the project's objectives, contributing to advancements in wildlife research and conservation.Santos, Vitor Manuel Pereira Duarte dosRodrigues, VitorRUNSá, Carolina Filipa Abreu2024-02-15T16:05:21Z2024-01-292024-01-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/163579TID:203518314enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:47:35Zoai:run.unl.pt:10362/163579Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:28.671538Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
title |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
spellingShingle |
Wild animals detection in Camera Trapping images: A Machine Learning approach Sá, Carolina Filipa Abreu Camera-trapping Image Processing Deep Convolutional Neural Networks Machine learning SDG 8 - Decent work and economic growth SDG 15 - Life on land Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
title_full |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
title_fullStr |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
title_full_unstemmed |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
title_sort |
Wild animals detection in Camera Trapping images: A Machine Learning approach |
author |
Sá, Carolina Filipa Abreu |
author_facet |
Sá, Carolina Filipa Abreu |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Vitor Manuel Pereira Duarte dos Rodrigues, Vitor RUN |
dc.contributor.author.fl_str_mv |
Sá, Carolina Filipa Abreu |
dc.subject.por.fl_str_mv |
Camera-trapping Image Processing Deep Convolutional Neural Networks Machine learning SDG 8 - Decent work and economic growth SDG 15 - Life on land Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Camera-trapping Image Processing Deep Convolutional Neural Networks Machine learning SDG 8 - Decent work and economic growth SDG 15 - Life on land Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-15T16:05:21Z 2024-01-29 2024-01-29T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/163579 TID:203518314 |
url |
http://hdl.handle.net/10362/163579 |
identifier_str_mv |
TID:203518314 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138174368219136 |