Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis

Detalhes bibliográficos
Autor(a) principal: Matos, Filipa Mendes de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/133293
Resumo: Health is an invaluable asset that prevails in any society throughout human history. As a priceless good, humans are willing to make all sacrifices to ensure this precious good. The techniques and technologies used over time, their massification and constant evolution, end up raising a highly competitive and increasingly sophisticated industry in a constant search directed to the population's most pressing needs. The digitalization of clinical processes and the immensity data acquired is currently an enormous knowledge capital. Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world health organisations that are trying to reverse this trend. In this context, there is an urgent need for projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers worldwide, being the most common global cause of cancer death in men and the third most common in women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming a worldwide public health issue. The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were reviewed from a clinical perspective. After understanding the dataset's content and the pre-processing data phase followed a descriptive analysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of Cox's Multivariate Proportional Hazard Model. Additionally, this dissertation reviews the applications domain, including the Healthcare industry structure and Information Systems and the technical knowledge necessary to implement Machine Learning algorithms. This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union Horizon 2020- under grant agreement nº 875160).
id RCAP_54808af225664e71eccf188a209dd631
oai_identifier_str oai:run.unl.pt:10362/133293
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Spanish Non-small Cell Lung Cancer Patients - A Survival AnalysisHealthMachine LearningNon-small cell lung cancerKaplan-MeierCox's MultivariateProportional Hazard ModelDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaHealth is an invaluable asset that prevails in any society throughout human history. As a priceless good, humans are willing to make all sacrifices to ensure this precious good. The techniques and technologies used over time, their massification and constant evolution, end up raising a highly competitive and increasingly sophisticated industry in a constant search directed to the population's most pressing needs. The digitalization of clinical processes and the immensity data acquired is currently an enormous knowledge capital. Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world health organisations that are trying to reverse this trend. In this context, there is an urgent need for projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers worldwide, being the most common global cause of cancer death in men and the third most common in women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming a worldwide public health issue. The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were reviewed from a clinical perspective. After understanding the dataset's content and the pre-processing data phase followed a descriptive analysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of Cox's Multivariate Proportional Hazard Model. Additionally, this dissertation reviews the applications domain, including the Healthcare industry structure and Information Systems and the technical knowledge necessary to implement Machine Learning algorithms. This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union Horizon 2020- under grant agreement nº 875160).A Saúde constitui um bem inestimável que prevalece em qualquer sociedade ao longo da história do ser humano. Sendo um bem inestimável os humanos estão dispostos a todos os sacrifícios de modo a assegurarem este precioso bem. As técnicas e tecnologias usadas ao longo do tempo, a sua massificação e constante evolução acabam por elevar esta indústria extremamente competitiva e cada vez mais sofisticada numa procura constante e direcionada para a necessidades mais urgentes da população humana. A digitalização dos processos clínicos e a imensidão de dados adquiridos constitui atualmente um enorme capital de conhecimento. O cancro é a segunda maior causa de morte no mundo, com tendência crescente, e consequentemente uma preocupação para a organização mundial de saúde que está a tentar reverter esta tendência. Neste contexto, há uma necessidade urgente de projetos e investigações, como esta dissertação, que visam antecipar o diagnóstico, prevenir as repercussões da doença, melhorar estilos de vida e aumentar as taxas de sobrevivência em pacientes com cancro. Este trabalho concentra-se explicitamente em pacientes com cancro do pulmão. O cancro de pulmão é um dos cancros mais comuns em todo o mundo, sendo a causa global mais comum de morte por cancro em homens e a terceira mais comum em mulheres. O cancro do pulmão de células não pequenas é responsável por aproximadamente 80% de todas as doenças malignas do pulmão. Além disso, a incidência de cancro do pulmão tem aumentando gradualmente nos últimos 50 anos, tornando-se um problema de saúde pública mundial. O conjunto de dados analisado é específico para pacientes com cancro de pulmão de células não pequenas e todos os seus atributos foram revistos de uma perspectiva clínica. Após a compreensão do conteúdo do conjunto de dados, seguiu-se a fase de pré-processamento dos dados, uma análise descritiva de cada atributo e a utilização do método de Kaplan-Meier. Finalmente, este trabalho propõe o uso do modelo de risco proporcional multivariado de Cox. Além disso, esta dissertação revê o domínio de aplicações, incluindo a estrutura da indústria de Saúde e Sistemas de Informação, tal como o conhecimento técnico necessário para implementar algoritmos de aprendizagem automática. Esta dissertação é apoiada pela Holos S.A. e envolvida no projeto CLARIFY (European Union Horizon 2020- ao abrigo do acordo da bolsa nº 875160).Sousa, PedroGuerreiro, GracindaRUNMatos, Filipa Mendes de2022-02-21T14:52:12Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133293enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:51Zoai:run.unl.pt:10362/133293Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:43.626797Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
title Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
spellingShingle Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
Matos, Filipa Mendes de
Health
Machine Learning
Non-small cell lung cancer
Kaplan-Meier
Cox's Multivariate
Proportional Hazard Model
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
title_full Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
title_fullStr Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
title_full_unstemmed Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
title_sort Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
author Matos, Filipa Mendes de
author_facet Matos, Filipa Mendes de
author_role author
dc.contributor.none.fl_str_mv Sousa, Pedro
Guerreiro, Gracinda
RUN
dc.contributor.author.fl_str_mv Matos, Filipa Mendes de
dc.subject.por.fl_str_mv Health
Machine Learning
Non-small cell lung cancer
Kaplan-Meier
Cox's Multivariate
Proportional Hazard Model
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Health
Machine Learning
Non-small cell lung cancer
Kaplan-Meier
Cox's Multivariate
Proportional Hazard Model
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Health is an invaluable asset that prevails in any society throughout human history. As a priceless good, humans are willing to make all sacrifices to ensure this precious good. The techniques and technologies used over time, their massification and constant evolution, end up raising a highly competitive and increasingly sophisticated industry in a constant search directed to the population's most pressing needs. The digitalization of clinical processes and the immensity data acquired is currently an enormous knowledge capital. Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world health organisations that are trying to reverse this trend. In this context, there is an urgent need for projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers worldwide, being the most common global cause of cancer death in men and the third most common in women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming a worldwide public health issue. The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were reviewed from a clinical perspective. After understanding the dataset's content and the pre-processing data phase followed a descriptive analysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of Cox's Multivariate Proportional Hazard Model. Additionally, this dissertation reviews the applications domain, including the Healthcare industry structure and Information Systems and the technical knowledge necessary to implement Machine Learning algorithms. This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union Horizon 2020- under grant agreement nº 875160).
publishDate 2021
dc.date.none.fl_str_mv 2021-12
2021-12-01T00:00:00Z
2022-02-21T14:52:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/133293
url http://hdl.handle.net/10362/133293
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138080095993856