Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/133293 |
Resumo: | Health is an invaluable asset that prevails in any society throughout human history. As a priceless good, humans are willing to make all sacrifices to ensure this precious good. The techniques and technologies used over time, their massification and constant evolution, end up raising a highly competitive and increasingly sophisticated industry in a constant search directed to the population's most pressing needs. The digitalization of clinical processes and the immensity data acquired is currently an enormous knowledge capital. Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world health organisations that are trying to reverse this trend. In this context, there is an urgent need for projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers worldwide, being the most common global cause of cancer death in men and the third most common in women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming a worldwide public health issue. The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were reviewed from a clinical perspective. After understanding the dataset's content and the pre-processing data phase followed a descriptive analysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of Cox's Multivariate Proportional Hazard Model. Additionally, this dissertation reviews the applications domain, including the Healthcare industry structure and Information Systems and the technical knowledge necessary to implement Machine Learning algorithms. This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union Horizon 2020- under grant agreement nº 875160). |
id |
RCAP_54808af225664e71eccf188a209dd631 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/133293 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Spanish Non-small Cell Lung Cancer Patients - A Survival AnalysisHealthMachine LearningNon-small cell lung cancerKaplan-MeierCox's MultivariateProportional Hazard ModelDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaHealth is an invaluable asset that prevails in any society throughout human history. As a priceless good, humans are willing to make all sacrifices to ensure this precious good. The techniques and technologies used over time, their massification and constant evolution, end up raising a highly competitive and increasingly sophisticated industry in a constant search directed to the population's most pressing needs. The digitalization of clinical processes and the immensity data acquired is currently an enormous knowledge capital. Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world health organisations that are trying to reverse this trend. In this context, there is an urgent need for projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers worldwide, being the most common global cause of cancer death in men and the third most common in women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming a worldwide public health issue. The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were reviewed from a clinical perspective. After understanding the dataset's content and the pre-processing data phase followed a descriptive analysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of Cox's Multivariate Proportional Hazard Model. Additionally, this dissertation reviews the applications domain, including the Healthcare industry structure and Information Systems and the technical knowledge necessary to implement Machine Learning algorithms. This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union Horizon 2020- under grant agreement nº 875160).A Saúde constitui um bem inestimável que prevalece em qualquer sociedade ao longo da história do ser humano. Sendo um bem inestimável os humanos estão dispostos a todos os sacrifícios de modo a assegurarem este precioso bem. As técnicas e tecnologias usadas ao longo do tempo, a sua massificação e constante evolução acabam por elevar esta indústria extremamente competitiva e cada vez mais sofisticada numa procura constante e direcionada para a necessidades mais urgentes da população humana. A digitalização dos processos clínicos e a imensidão de dados adquiridos constitui atualmente um enorme capital de conhecimento. O cancro é a segunda maior causa de morte no mundo, com tendência crescente, e consequentemente uma preocupação para a organização mundial de saúde que está a tentar reverter esta tendência. Neste contexto, há uma necessidade urgente de projetos e investigações, como esta dissertação, que visam antecipar o diagnóstico, prevenir as repercussões da doença, melhorar estilos de vida e aumentar as taxas de sobrevivência em pacientes com cancro. Este trabalho concentra-se explicitamente em pacientes com cancro do pulmão. O cancro de pulmão é um dos cancros mais comuns em todo o mundo, sendo a causa global mais comum de morte por cancro em homens e a terceira mais comum em mulheres. O cancro do pulmão de células não pequenas é responsável por aproximadamente 80% de todas as doenças malignas do pulmão. Além disso, a incidência de cancro do pulmão tem aumentando gradualmente nos últimos 50 anos, tornando-se um problema de saúde pública mundial. O conjunto de dados analisado é específico para pacientes com cancro de pulmão de células não pequenas e todos os seus atributos foram revistos de uma perspectiva clínica. Após a compreensão do conteúdo do conjunto de dados, seguiu-se a fase de pré-processamento dos dados, uma análise descritiva de cada atributo e a utilização do método de Kaplan-Meier. Finalmente, este trabalho propõe o uso do modelo de risco proporcional multivariado de Cox. Além disso, esta dissertação revê o domínio de aplicações, incluindo a estrutura da indústria de Saúde e Sistemas de Informação, tal como o conhecimento técnico necessário para implementar algoritmos de aprendizagem automática. Esta dissertação é apoiada pela Holos S.A. e envolvida no projeto CLARIFY (European Union Horizon 2020- ao abrigo do acordo da bolsa nº 875160).Sousa, PedroGuerreiro, GracindaRUNMatos, Filipa Mendes de2022-02-21T14:52:12Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/133293enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:51Zoai:run.unl.pt:10362/133293Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:43.626797Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
title |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
spellingShingle |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis Matos, Filipa Mendes de Health Machine Learning Non-small cell lung cancer Kaplan-Meier Cox's Multivariate Proportional Hazard Model Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
title_full |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
title_fullStr |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
title_full_unstemmed |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
title_sort |
Spanish Non-small Cell Lung Cancer Patients - A Survival Analysis |
author |
Matos, Filipa Mendes de |
author_facet |
Matos, Filipa Mendes de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sousa, Pedro Guerreiro, Gracinda RUN |
dc.contributor.author.fl_str_mv |
Matos, Filipa Mendes de |
dc.subject.por.fl_str_mv |
Health Machine Learning Non-small cell lung cancer Kaplan-Meier Cox's Multivariate Proportional Hazard Model Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Health Machine Learning Non-small cell lung cancer Kaplan-Meier Cox's Multivariate Proportional Hazard Model Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Health is an invaluable asset that prevails in any society throughout human history. As a priceless good, humans are willing to make all sacrifices to ensure this precious good. The techniques and technologies used over time, their massification and constant evolution, end up raising a highly competitive and increasingly sophisticated industry in a constant search directed to the population's most pressing needs. The digitalization of clinical processes and the immensity data acquired is currently an enormous knowledge capital. Cancer is the second leading cause of death worldwide, and its increasing number is a concern for world health organisations that are trying to reverse this trend. In this context, there is an urgent need for projects and research such as this dissertation that aims to achieve early diagnosis, predict and prevent disease repercussions, improve quality of life, and increase survivorship rates in cancer patients. This work focuses explicitly on lung cancer patients. Lung cancer is one of the most typical cancers worldwide, being the most common global cause of cancer death in men and the third most common in women. Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies. In addition, the incidence of lung cancer has been gradually increasing over the last 50 years, becoming a worldwide public health issue. The dataset analysed is specific for non-small cell lung cancer patients, and all its attributes were reviewed from a clinical perspective. After understanding the dataset's content and the pre-processing data phase followed a descriptive analysis of each attribute, and the use of the Kaplan-Meier method. Finally, this work proposes the use of Cox's Multivariate Proportional Hazard Model. Additionally, this dissertation reviews the applications domain, including the Healthcare industry structure and Information Systems and the technical knowledge necessary to implement Machine Learning algorithms. This work was supported by Holos S.A. and engaged with the CLARIFY project (European Union Horizon 2020- under grant agreement nº 875160). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 2021-12-01T00:00:00Z 2022-02-21T14:52:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/133293 |
url |
http://hdl.handle.net/10362/133293 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138080095993856 |