Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/60849 |
Resumo: | Plants and their pathogens are engaged in continuous evolutionary battles, with pathogens evolving to circumvent plant defense mechanisms and plants responding through enhanced protection to prevent or mitigate damage induced by pathogen attack. Managed ecosystems are composed of genetically identical populations of crop plants with few changes from year to year. These environments are highly conducive to the emergence and dissemination of pathogens and they exert selective pressure for both qualitative virulence factors responsible for fungal pathogenicity, and quantitative traits linked to pathogen fitness, such as aggressiveness. In this study, we used a comparative genome-wide approach to investigate the genomic basis underlying the pathogenicity and aggressiveness of the fungal coffee pathogen Colletotrichum kahawae infecting green coffee berries. The pathogenicity was investigated by comparing genomic variation between C. kahawae and its non-pathogenic sibling species, while the aggressiveness was studied by a genome-wide association approach with groups of isolates with different phenotypic profiles. High genetic differentiation was observed between C. kahawae and the most closely related species with 5,560 diagnostic SNPs identified, in which a significant enrichment of non-synonymous mutations was detected. Functional annotation of these non-synonymous mutations revealed a significant enrichment mainly in two gene ontology categories, “oxidation–reduction process” and “integral component of membrane.” Finally, the annotation of several genes potentially under-selection revealed that C. kahawae’s pathogenicity may be a complex biological process, in which important biological functions, such as, detoxification and transport, regulation of host and pathogen gene expression, and signaling are involved. On the other hand, the genome-wide association analyses for aggressiveness were able to identify 10 SNPs and 15 SNPs of small effect in single and multi-association analysis, respectively, from which 7 were common, giving in total 18 SNPs potentially associated. The annotation of these genomic regions allowed the identification of four candidate genes encoding F-box domain-containing, nitrosoguanidine resistance, Fungal specific transcription factor domain-containing and C6 transcription factor that could be associated with aggressiveness. This study shed light, for the first time, on the genetic mechanisms of C. kahawae host specialization. |
id |
RCAP_5609ad7a13eb01ca274e07dd1191e58c |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/60849 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and AggressivenessPlants and their pathogens are engaged in continuous evolutionary battles, with pathogens evolving to circumvent plant defense mechanisms and plants responding through enhanced protection to prevent or mitigate damage induced by pathogen attack. Managed ecosystems are composed of genetically identical populations of crop plants with few changes from year to year. These environments are highly conducive to the emergence and dissemination of pathogens and they exert selective pressure for both qualitative virulence factors responsible for fungal pathogenicity, and quantitative traits linked to pathogen fitness, such as aggressiveness. In this study, we used a comparative genome-wide approach to investigate the genomic basis underlying the pathogenicity and aggressiveness of the fungal coffee pathogen Colletotrichum kahawae infecting green coffee berries. The pathogenicity was investigated by comparing genomic variation between C. kahawae and its non-pathogenic sibling species, while the aggressiveness was studied by a genome-wide association approach with groups of isolates with different phenotypic profiles. High genetic differentiation was observed between C. kahawae and the most closely related species with 5,560 diagnostic SNPs identified, in which a significant enrichment of non-synonymous mutations was detected. Functional annotation of these non-synonymous mutations revealed a significant enrichment mainly in two gene ontology categories, “oxidation–reduction process” and “integral component of membrane.” Finally, the annotation of several genes potentially under-selection revealed that C. kahawae’s pathogenicity may be a complex biological process, in which important biological functions, such as, detoxification and transport, regulation of host and pathogen gene expression, and signaling are involved. On the other hand, the genome-wide association analyses for aggressiveness were able to identify 10 SNPs and 15 SNPs of small effect in single and multi-association analysis, respectively, from which 7 were common, giving in total 18 SNPs potentially associated. The annotation of these genomic regions allowed the identification of four candidate genes encoding F-box domain-containing, nitrosoguanidine resistance, Fungal specific transcription factor domain-containing and C6 transcription factor that could be associated with aggressiveness. This study shed light, for the first time, on the genetic mechanisms of C. kahawae host specialization.FrontiersRepositório da Universidade de LisboaVieira, AnaSilva, Diogo NunoVárzea, VitorPaulo, Octávio S.Batista, Dora2023-11-24T12:54:28Z2019-062019-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10451/60849engVieira A, Silva DN, Várzea V, Paulo OS and Batista D (2019) Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness. Front. Microbiol. 10:1374. doi: 10.3389/fmicb.2019.0137410.3389/fmicb.2019.01374info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-20T18:25:27Zoai:repositorio.ul.pt:10451/60849Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-20T18:25:27Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
title |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
spellingShingle |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness Vieira, Ana |
title_short |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
title_full |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
title_fullStr |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
title_full_unstemmed |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
title_sort |
Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness |
author |
Vieira, Ana |
author_facet |
Vieira, Ana Silva, Diogo Nuno Várzea, Vitor Paulo, Octávio S. Batista, Dora |
author_role |
author |
author2 |
Silva, Diogo Nuno Várzea, Vitor Paulo, Octávio S. Batista, Dora |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Vieira, Ana Silva, Diogo Nuno Várzea, Vitor Paulo, Octávio S. Batista, Dora |
description |
Plants and their pathogens are engaged in continuous evolutionary battles, with pathogens evolving to circumvent plant defense mechanisms and plants responding through enhanced protection to prevent or mitigate damage induced by pathogen attack. Managed ecosystems are composed of genetically identical populations of crop plants with few changes from year to year. These environments are highly conducive to the emergence and dissemination of pathogens and they exert selective pressure for both qualitative virulence factors responsible for fungal pathogenicity, and quantitative traits linked to pathogen fitness, such as aggressiveness. In this study, we used a comparative genome-wide approach to investigate the genomic basis underlying the pathogenicity and aggressiveness of the fungal coffee pathogen Colletotrichum kahawae infecting green coffee berries. The pathogenicity was investigated by comparing genomic variation between C. kahawae and its non-pathogenic sibling species, while the aggressiveness was studied by a genome-wide association approach with groups of isolates with different phenotypic profiles. High genetic differentiation was observed between C. kahawae and the most closely related species with 5,560 diagnostic SNPs identified, in which a significant enrichment of non-synonymous mutations was detected. Functional annotation of these non-synonymous mutations revealed a significant enrichment mainly in two gene ontology categories, “oxidation–reduction process” and “integral component of membrane.” Finally, the annotation of several genes potentially under-selection revealed that C. kahawae’s pathogenicity may be a complex biological process, in which important biological functions, such as, detoxification and transport, regulation of host and pathogen gene expression, and signaling are involved. On the other hand, the genome-wide association analyses for aggressiveness were able to identify 10 SNPs and 15 SNPs of small effect in single and multi-association analysis, respectively, from which 7 were common, giving in total 18 SNPs potentially associated. The annotation of these genomic regions allowed the identification of four candidate genes encoding F-box domain-containing, nitrosoguanidine resistance, Fungal specific transcription factor domain-containing and C6 transcription factor that could be associated with aggressiveness. This study shed light, for the first time, on the genetic mechanisms of C. kahawae host specialization. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06 2019-06-01T00:00:00Z 2023-11-24T12:54:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/60849 |
url |
http://hdl.handle.net/10451/60849 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Vieira A, Silva DN, Várzea V, Paulo OS and Batista D (2019) Genome-Wide Signatures of Selection in Colletotrichum kahawae Reveal Candidate Genes Potentially Involved in Pathogenicity and Aggressiveness. Front. Microbiol. 10:1374. doi: 10.3389/fmicb.2019.01374 10.3389/fmicb.2019.01374 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers |
publisher.none.fl_str_mv |
Frontiers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817549259687329792 |