Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics

Detalhes bibliográficos
Autor(a) principal: Costa, S. A.
Data de Publicação: 2004
Outros Autores: Reis, R. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/4001
Resumo: In this study, a specific enzyme catalase was immobilised onto the surface of two different biodegradable materials, starch cellulose acetate (SCA) and starch polycrapolactone (SPCL) blends. This immobilisation was achieved by several different routes, mainly by covalent binding and an adsorption method using as activation agents epichlorohydrin, cyanogen bromide (CNBr), and aminopropyltriethoxysilane. The effect of the coupling pH of the enzyme-support reaction was determined in terms of activity recovery (%). The catalase immobilised on SCA showed higher activity recovery (%) for all the methods used as compared with results obtained with SPCL. The immobilisation process using epichlorohydrin as an activation agent and polyethylenimine as a spacer-arm enhanced the stability and the half-lives at pH 7.0, 30 °C, for immobilised catalase on both SCA and SPCL. The half-lives were respectively, 1162 and 870 h compared with other treatments and free enzyme (480 h). The free glycerol present in the immobilisation medium was also a factor that contributed toward the better performance regarding the long-term stability at 30 °C and neutral pH. The extension of the morphological modifications on the surface of the materials was observed by scanning electron microscopy. In general, the results indicated that the chemical modification with epichlorohydrin could provide a simple and rather efficient technique to modify the starch-based materials' surface that might be useful in several biomedical applications
id RCAP_564151eb4d6660b97111561eaa06e77b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/4001
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristicsScience & TechnologyIn this study, a specific enzyme catalase was immobilised onto the surface of two different biodegradable materials, starch cellulose acetate (SCA) and starch polycrapolactone (SPCL) blends. This immobilisation was achieved by several different routes, mainly by covalent binding and an adsorption method using as activation agents epichlorohydrin, cyanogen bromide (CNBr), and aminopropyltriethoxysilane. The effect of the coupling pH of the enzyme-support reaction was determined in terms of activity recovery (%). The catalase immobilised on SCA showed higher activity recovery (%) for all the methods used as compared with results obtained with SPCL. The immobilisation process using epichlorohydrin as an activation agent and polyethylenimine as a spacer-arm enhanced the stability and the half-lives at pH 7.0, 30 °C, for immobilised catalase on both SCA and SPCL. The half-lives were respectively, 1162 and 870 h compared with other treatments and free enzyme (480 h). The free glycerol present in the immobilisation medium was also a factor that contributed toward the better performance regarding the long-term stability at 30 °C and neutral pH. The extension of the morphological modifications on the surface of the materials was observed by scanning electron microscopy. In general, the results indicated that the chemical modification with epichlorohydrin could provide a simple and rather efficient technique to modify the starch-based materials' surface that might be useful in several biomedical applicationsFundação para a Ciência e Tecnologia (FCT).KluwerUniversidade do MinhoCosta, S. A.Reis, R. L.2004-042004-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/4001eng"Journal Materials Science : Materials in Medicine". ISSN 0957-4530. 15:4 (Apr. 2004) 335-342.0957-453010.1023/B:JMSM.0000021098.75103.3a15332596info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:27:20Zoai:repositorium.sdum.uminho.pt:1822/4001Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:21:53.439639Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
title Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
spellingShingle Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
Costa, S. A.
Science & Technology
title_short Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
title_full Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
title_fullStr Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
title_full_unstemmed Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
title_sort Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
author Costa, S. A.
author_facet Costa, S. A.
Reis, R. L.
author_role author
author2 Reis, R. L.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Costa, S. A.
Reis, R. L.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description In this study, a specific enzyme catalase was immobilised onto the surface of two different biodegradable materials, starch cellulose acetate (SCA) and starch polycrapolactone (SPCL) blends. This immobilisation was achieved by several different routes, mainly by covalent binding and an adsorption method using as activation agents epichlorohydrin, cyanogen bromide (CNBr), and aminopropyltriethoxysilane. The effect of the coupling pH of the enzyme-support reaction was determined in terms of activity recovery (%). The catalase immobilised on SCA showed higher activity recovery (%) for all the methods used as compared with results obtained with SPCL. The immobilisation process using epichlorohydrin as an activation agent and polyethylenimine as a spacer-arm enhanced the stability and the half-lives at pH 7.0, 30 °C, for immobilised catalase on both SCA and SPCL. The half-lives were respectively, 1162 and 870 h compared with other treatments and free enzyme (480 h). The free glycerol present in the immobilisation medium was also a factor that contributed toward the better performance regarding the long-term stability at 30 °C and neutral pH. The extension of the morphological modifications on the surface of the materials was observed by scanning electron microscopy. In general, the results indicated that the chemical modification with epichlorohydrin could provide a simple and rather efficient technique to modify the starch-based materials' surface that might be useful in several biomedical applications
publishDate 2004
dc.date.none.fl_str_mv 2004-04
2004-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/4001
url http://hdl.handle.net/1822/4001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv "Journal Materials Science : Materials in Medicine". ISSN 0957-4530. 15:4 (Apr. 2004) 335-342.
0957-4530
10.1023/B:JMSM.0000021098.75103.3a
15332596
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Kluwer
publisher.none.fl_str_mv Kluwer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132687734145024