Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/4001 |
Resumo: | In this study, a specific enzyme catalase was immobilised onto the surface of two different biodegradable materials, starch cellulose acetate (SCA) and starch polycrapolactone (SPCL) blends. This immobilisation was achieved by several different routes, mainly by covalent binding and an adsorption method using as activation agents epichlorohydrin, cyanogen bromide (CNBr), and aminopropyltriethoxysilane. The effect of the coupling pH of the enzyme-support reaction was determined in terms of activity recovery (%). The catalase immobilised on SCA showed higher activity recovery (%) for all the methods used as compared with results obtained with SPCL. The immobilisation process using epichlorohydrin as an activation agent and polyethylenimine as a spacer-arm enhanced the stability and the half-lives at pH 7.0, 30 °C, for immobilised catalase on both SCA and SPCL. The half-lives were respectively, 1162 and 870 h compared with other treatments and free enzyme (480 h). The free glycerol present in the immobilisation medium was also a factor that contributed toward the better performance regarding the long-term stability at 30 °C and neutral pH. The extension of the morphological modifications on the surface of the materials was observed by scanning electron microscopy. In general, the results indicated that the chemical modification with epichlorohydrin could provide a simple and rather efficient technique to modify the starch-based materials' surface that might be useful in several biomedical applications |
id |
RCAP_564151eb4d6660b97111561eaa06e77b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/4001 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristicsScience & TechnologyIn this study, a specific enzyme catalase was immobilised onto the surface of two different biodegradable materials, starch cellulose acetate (SCA) and starch polycrapolactone (SPCL) blends. This immobilisation was achieved by several different routes, mainly by covalent binding and an adsorption method using as activation agents epichlorohydrin, cyanogen bromide (CNBr), and aminopropyltriethoxysilane. The effect of the coupling pH of the enzyme-support reaction was determined in terms of activity recovery (%). The catalase immobilised on SCA showed higher activity recovery (%) for all the methods used as compared with results obtained with SPCL. The immobilisation process using epichlorohydrin as an activation agent and polyethylenimine as a spacer-arm enhanced the stability and the half-lives at pH 7.0, 30 °C, for immobilised catalase on both SCA and SPCL. The half-lives were respectively, 1162 and 870 h compared with other treatments and free enzyme (480 h). The free glycerol present in the immobilisation medium was also a factor that contributed toward the better performance regarding the long-term stability at 30 °C and neutral pH. The extension of the morphological modifications on the surface of the materials was observed by scanning electron microscopy. In general, the results indicated that the chemical modification with epichlorohydrin could provide a simple and rather efficient technique to modify the starch-based materials' surface that might be useful in several biomedical applicationsFundação para a Ciência e Tecnologia (FCT).KluwerUniversidade do MinhoCosta, S. A.Reis, R. L.2004-042004-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/4001eng"Journal Materials Science : Materials in Medicine". ISSN 0957-4530. 15:4 (Apr. 2004) 335-342.0957-453010.1023/B:JMSM.0000021098.75103.3a15332596info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:27:20Zoai:repositorium.sdum.uminho.pt:1822/4001Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:21:53.439639Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
title |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
spellingShingle |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics Costa, S. A. Science & Technology |
title_short |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
title_full |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
title_fullStr |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
title_full_unstemmed |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
title_sort |
Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics |
author |
Costa, S. A. |
author_facet |
Costa, S. A. Reis, R. L. |
author_role |
author |
author2 |
Reis, R. L. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Costa, S. A. Reis, R. L. |
dc.subject.por.fl_str_mv |
Science & Technology |
topic |
Science & Technology |
description |
In this study, a specific enzyme catalase was immobilised onto the surface of two different biodegradable materials, starch cellulose acetate (SCA) and starch polycrapolactone (SPCL) blends. This immobilisation was achieved by several different routes, mainly by covalent binding and an adsorption method using as activation agents epichlorohydrin, cyanogen bromide (CNBr), and aminopropyltriethoxysilane. The effect of the coupling pH of the enzyme-support reaction was determined in terms of activity recovery (%). The catalase immobilised on SCA showed higher activity recovery (%) for all the methods used as compared with results obtained with SPCL. The immobilisation process using epichlorohydrin as an activation agent and polyethylenimine as a spacer-arm enhanced the stability and the half-lives at pH 7.0, 30 °C, for immobilised catalase on both SCA and SPCL. The half-lives were respectively, 1162 and 870 h compared with other treatments and free enzyme (480 h). The free glycerol present in the immobilisation medium was also a factor that contributed toward the better performance regarding the long-term stability at 30 °C and neutral pH. The extension of the morphological modifications on the surface of the materials was observed by scanning electron microscopy. In general, the results indicated that the chemical modification with epichlorohydrin could provide a simple and rather efficient technique to modify the starch-based materials' surface that might be useful in several biomedical applications |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-04 2004-04-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/4001 |
url |
http://hdl.handle.net/1822/4001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Journal Materials Science : Materials in Medicine". ISSN 0957-4530. 15:4 (Apr. 2004) 335-342. 0957-4530 10.1023/B:JMSM.0000021098.75103.3a 15332596 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Kluwer |
publisher.none.fl_str_mv |
Kluwer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132687734145024 |