Data and computer center prediction of usage and cost: an interpretable machine learning approach

Detalhes bibliográficos
Autor(a) principal: Mateus, Gonçalo Furtado
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160465
Resumo: In recent years, Cloud computing usage has considerably increased and, nowadays, it is the backbone of many emerging applications. However, behind cloud structures, we have physical infrastructures (data centers) for which managing is difficult due to un- predictable utilization patterns. To address the constraints of reactive auto-scaling, data centers are widely adopting predictive cloud resource management mechanisms. How- ever, predictive methods rely on application workloads and are typically pre-optimized for specific patterns, which can cause under/over-provisioning of resources. Accurate workload forecasts are necessary to gain efficiency, save money, and provide clients with better and faster services. Working with real data from a Portuguese bank, we propose Ensemble Adaptive Model with Drift detector (EAMDrift). This novel method combines forecasts from multi- ple individual predictors by giving weights to each individual model prediction according to a performance metric. EAMDrift automatically retrains when needed and identifies the most appropriate models to use at each moment through interpretable mechanisms. We tested our novel methodology in a real data problem, by studying the influence of external signals (mass and social media) on data center workloads. As we are working with real data from a bank, we hypothesize that users can increase or decrease the usage of some applications depending on external factors such as controversies or news about economics. For this study, EAMDrift was projected to allow multiple past covariates. We evaluated EAMDrift in different workloads and compared the results with sev- eral baseline methods models. The experimental evaluation shows that EAMDrift out- performs individual baseline models in 15% to 25%. Compared to the best black-box ensemble model, our model has a comparable error (increased in 1-3%). Thus, this work suggests that interpretable models are a viable solution for data center workload predic- tion.
id RCAP_56f17eaee71dcb1bcf95a548742e9d46
oai_identifier_str oai:run.unl.pt:10362/160465
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Data and computer center prediction of usage and cost: an interpretable machine learning approachData center managementInterpretable machine learningDynamic prediction modelNatural language processingFeature extractionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn recent years, Cloud computing usage has considerably increased and, nowadays, it is the backbone of many emerging applications. However, behind cloud structures, we have physical infrastructures (data centers) for which managing is difficult due to un- predictable utilization patterns. To address the constraints of reactive auto-scaling, data centers are widely adopting predictive cloud resource management mechanisms. How- ever, predictive methods rely on application workloads and are typically pre-optimized for specific patterns, which can cause under/over-provisioning of resources. Accurate workload forecasts are necessary to gain efficiency, save money, and provide clients with better and faster services. Working with real data from a Portuguese bank, we propose Ensemble Adaptive Model with Drift detector (EAMDrift). This novel method combines forecasts from multi- ple individual predictors by giving weights to each individual model prediction according to a performance metric. EAMDrift automatically retrains when needed and identifies the most appropriate models to use at each moment through interpretable mechanisms. We tested our novel methodology in a real data problem, by studying the influence of external signals (mass and social media) on data center workloads. As we are working with real data from a bank, we hypothesize that users can increase or decrease the usage of some applications depending on external factors such as controversies or news about economics. For this study, EAMDrift was projected to allow multiple past covariates. We evaluated EAMDrift in different workloads and compared the results with sev- eral baseline methods models. The experimental evaluation shows that EAMDrift out- performs individual baseline models in 15% to 25%. Compared to the best black-box ensemble model, our model has a comparable error (increased in 1-3%). Thus, this work suggests that interpretable models are a viable solution for data center workload predic- tion.Nos últimos anos, a computação em nuvem tem tido um aumento considerável e, hoje pode ser vista como a espinha dorsal de muitas aplicações que estão a emergir. Contudo, por detrás das conhecidas nuvens, existem estruturas físicas (centro de dados) nas quais, a gestão tem se revelado uma tarefa bastante difícil devido à imprevisibilidade de utilização dos serviços. Para lidar com as restrições do auto-scalling reativo, os mecanismos de gestão dos centros de dados começaram a adotar algoritmos preditivos. No entanto, os algoritmos preditivos são treinados com base nas cargas de utilização das aplicações e geralmente não estão otimizados para todos os padrões, causando sub/sobre provisionamento dos recursos. Através da utilização de dados reais do centro de dados de um banco português, pro- pomos o Ensemble Adaptive Model with Drift detector (EAMDrift). Este novo método combina previsões de vários modelos individuais através de uma métrica de desempe- nho. O EAMDrift possui mecanismos interpretáveis que permitem detetar os melhores modelos em cada previsão, bem como detetar momentos para ser retreinado. A nossa metodologia foi testada num problema com dados reais, e foi estudada a influência de fatores externos (notícias relacionadas com o banco) com a sua utilização. Sendo estes dados de um banco, é possível que os utilizadores aumentem ou diminuam o uso de algumas aplicações com base em fatores externos (polêmicas ou notícias sobre economia). Para isto, o EAMDrift permite o uso de outras variáveis (covariadas). O modelo proposto neste trabalho foi avaliado em diferentes conjuntos de dados e os resultados foram comparados entre vários modelos de base. O EAMDrift superou todos os modelos de base em 15% a 25%. Quando comparado com o melhor modelo que também combina várias previsões mas de forma não interpretável, o nosso modelo obteve um erro comparável (maior em 1 a 3%). Assim, este trabalho sugere que modelos interpretáveis podem ser uma solução viável para a gestão dos centros de dados.Soares, CláudiaLeitão, JoãoRodrigues, AntónioRUNMateus, Gonçalo Furtado2023-11-24T19:04:05Z2023-052023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160465enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:12Zoai:run.unl.pt:10362/160465Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:04.163724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Data and computer center prediction of usage and cost: an interpretable machine learning approach
title Data and computer center prediction of usage and cost: an interpretable machine learning approach
spellingShingle Data and computer center prediction of usage and cost: an interpretable machine learning approach
Mateus, Gonçalo Furtado
Data center management
Interpretable machine learning
Dynamic prediction model
Natural language processing
Feature extraction
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Data and computer center prediction of usage and cost: an interpretable machine learning approach
title_full Data and computer center prediction of usage and cost: an interpretable machine learning approach
title_fullStr Data and computer center prediction of usage and cost: an interpretable machine learning approach
title_full_unstemmed Data and computer center prediction of usage and cost: an interpretable machine learning approach
title_sort Data and computer center prediction of usage and cost: an interpretable machine learning approach
author Mateus, Gonçalo Furtado
author_facet Mateus, Gonçalo Furtado
author_role author
dc.contributor.none.fl_str_mv Soares, Cláudia
Leitão, João
Rodrigues, António
RUN
dc.contributor.author.fl_str_mv Mateus, Gonçalo Furtado
dc.subject.por.fl_str_mv Data center management
Interpretable machine learning
Dynamic prediction model
Natural language processing
Feature extraction
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Data center management
Interpretable machine learning
Dynamic prediction model
Natural language processing
Feature extraction
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description In recent years, Cloud computing usage has considerably increased and, nowadays, it is the backbone of many emerging applications. However, behind cloud structures, we have physical infrastructures (data centers) for which managing is difficult due to un- predictable utilization patterns. To address the constraints of reactive auto-scaling, data centers are widely adopting predictive cloud resource management mechanisms. How- ever, predictive methods rely on application workloads and are typically pre-optimized for specific patterns, which can cause under/over-provisioning of resources. Accurate workload forecasts are necessary to gain efficiency, save money, and provide clients with better and faster services. Working with real data from a Portuguese bank, we propose Ensemble Adaptive Model with Drift detector (EAMDrift). This novel method combines forecasts from multi- ple individual predictors by giving weights to each individual model prediction according to a performance metric. EAMDrift automatically retrains when needed and identifies the most appropriate models to use at each moment through interpretable mechanisms. We tested our novel methodology in a real data problem, by studying the influence of external signals (mass and social media) on data center workloads. As we are working with real data from a bank, we hypothesize that users can increase or decrease the usage of some applications depending on external factors such as controversies or news about economics. For this study, EAMDrift was projected to allow multiple past covariates. We evaluated EAMDrift in different workloads and compared the results with sev- eral baseline methods models. The experimental evaluation shows that EAMDrift out- performs individual baseline models in 15% to 25%. Compared to the best black-box ensemble model, our model has a comparable error (increased in 1-3%). Thus, this work suggests that interpretable models are a viable solution for data center workload predic- tion.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-24T19:04:05Z
2023-05
2023-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160465
url http://hdl.handle.net/10362/160465
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138162349441024