Integrated Classifier: A Tool for Microarray Analysis

Detalhes bibliográficos
Autor(a) principal: Bhowmick, Shib Sankar
Data de Publicação: 2017
Outros Autores: L., Rato, D., Bhattacharjee, I., Saha
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
DOI: 10.1007/978-981-10-6430-2_3
Texto Completo: http://hdl.handle.net/10174/22982
https://doi.org/10.1007/978-981-10-6430-2_3
Resumo: Microarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test.
id RCAP_57a53d488ebf88215d78b2db23d90592
oai_identifier_str oai:dspace.uevora.pt:10174/22982
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Integrated Classifier: A Tool for Microarray AnalysisFeature selectionMicroarrayPrinciple component analysisSupervised classifiersStatistical significance testMicroarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test.Springer2018-03-14T12:30:43Z2018-03-142017-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/22982http://hdl.handle.net/10174/22982https://doi.org/10.1007/978-981-10-6430-2_3porBhowmick S.S., Saha I., Rato L., Bhattacharjee D. (2017) Integrated Classifier: A Tool for Microarray Analysis. In: Mandal J., Dutta P., Mukhopadhyay S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer.https://link.springer.com/chapter/10.1007/978-981-10-6430-2_3ndndndnd498Bhowmick, Shib SankarL., RatoD., BhattacharjeeI., Sahainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:14:42Zoai:dspace.uevora.pt:10174/22982Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:13:53.797997Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Integrated Classifier: A Tool for Microarray Analysis
title Integrated Classifier: A Tool for Microarray Analysis
spellingShingle Integrated Classifier: A Tool for Microarray Analysis
Integrated Classifier: A Tool for Microarray Analysis
Bhowmick, Shib Sankar
Feature selection
Microarray
Principle component analysis
Supervised classifiers
Statistical significance test
Bhowmick, Shib Sankar
Feature selection
Microarray
Principle component analysis
Supervised classifiers
Statistical significance test
title_short Integrated Classifier: A Tool for Microarray Analysis
title_full Integrated Classifier: A Tool for Microarray Analysis
title_fullStr Integrated Classifier: A Tool for Microarray Analysis
Integrated Classifier: A Tool for Microarray Analysis
title_full_unstemmed Integrated Classifier: A Tool for Microarray Analysis
Integrated Classifier: A Tool for Microarray Analysis
title_sort Integrated Classifier: A Tool for Microarray Analysis
author Bhowmick, Shib Sankar
author_facet Bhowmick, Shib Sankar
Bhowmick, Shib Sankar
L., Rato
D., Bhattacharjee
I., Saha
L., Rato
D., Bhattacharjee
I., Saha
author_role author
author2 L., Rato
D., Bhattacharjee
I., Saha
author2_role author
author
author
dc.contributor.author.fl_str_mv Bhowmick, Shib Sankar
L., Rato
D., Bhattacharjee
I., Saha
dc.subject.por.fl_str_mv Feature selection
Microarray
Principle component analysis
Supervised classifiers
Statistical significance test
topic Feature selection
Microarray
Principle component analysis
Supervised classifiers
Statistical significance test
description Microarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-01T00:00:00Z
2018-03-14T12:30:43Z
2018-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/22982
http://hdl.handle.net/10174/22982
https://doi.org/10.1007/978-981-10-6430-2_3
url http://hdl.handle.net/10174/22982
https://doi.org/10.1007/978-981-10-6430-2_3
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Bhowmick S.S., Saha I., Rato L., Bhattacharjee D. (2017) Integrated Classifier: A Tool for Microarray Analysis. In: Mandal J., Dutta P., Mukhopadhyay S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer.
https://link.springer.com/chapter/10.1007/978-981-10-6430-2_3
nd
nd
nd
nd
498
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1822239449389465600
dc.identifier.doi.none.fl_str_mv 10.1007/978-981-10-6430-2_3