Integrated Classifier: A Tool for Microarray Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
DOI: | 10.1007/978-981-10-6430-2_3 |
Texto Completo: | http://hdl.handle.net/10174/22982 https://doi.org/10.1007/978-981-10-6430-2_3 |
Resumo: | Microarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test. |
id |
RCAP_57a53d488ebf88215d78b2db23d90592 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/22982 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Integrated Classifier: A Tool for Microarray AnalysisFeature selectionMicroarrayPrinciple component analysisSupervised classifiersStatistical significance testMicroarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test.Springer2018-03-14T12:30:43Z2018-03-142017-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/22982http://hdl.handle.net/10174/22982https://doi.org/10.1007/978-981-10-6430-2_3porBhowmick S.S., Saha I., Rato L., Bhattacharjee D. (2017) Integrated Classifier: A Tool for Microarray Analysis. In: Mandal J., Dutta P., Mukhopadhyay S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer.https://link.springer.com/chapter/10.1007/978-981-10-6430-2_3ndndndnd498Bhowmick, Shib SankarL., RatoD., BhattacharjeeI., Sahainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:14:42Zoai:dspace.uevora.pt:10174/22982Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:13:53.797997Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Integrated Classifier: A Tool for Microarray Analysis |
title |
Integrated Classifier: A Tool for Microarray Analysis |
spellingShingle |
Integrated Classifier: A Tool for Microarray Analysis Integrated Classifier: A Tool for Microarray Analysis Bhowmick, Shib Sankar Feature selection Microarray Principle component analysis Supervised classifiers Statistical significance test Bhowmick, Shib Sankar Feature selection Microarray Principle component analysis Supervised classifiers Statistical significance test |
title_short |
Integrated Classifier: A Tool for Microarray Analysis |
title_full |
Integrated Classifier: A Tool for Microarray Analysis |
title_fullStr |
Integrated Classifier: A Tool for Microarray Analysis Integrated Classifier: A Tool for Microarray Analysis |
title_full_unstemmed |
Integrated Classifier: A Tool for Microarray Analysis Integrated Classifier: A Tool for Microarray Analysis |
title_sort |
Integrated Classifier: A Tool for Microarray Analysis |
author |
Bhowmick, Shib Sankar |
author_facet |
Bhowmick, Shib Sankar Bhowmick, Shib Sankar L., Rato D., Bhattacharjee I., Saha L., Rato D., Bhattacharjee I., Saha |
author_role |
author |
author2 |
L., Rato D., Bhattacharjee I., Saha |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bhowmick, Shib Sankar L., Rato D., Bhattacharjee I., Saha |
dc.subject.por.fl_str_mv |
Feature selection Microarray Principle component analysis Supervised classifiers Statistical significance test |
topic |
Feature selection Microarray Principle component analysis Supervised classifiers Statistical significance test |
description |
Microarray technology has been developed and applied in different biological context, especially for the purpose of monitoring the expression levels of thousands of genes simultaneously. In this regard, analysis of such data requires sophisticated computational tools. Hence, we confined ourselves to propose a tool for the analysis of microarray data. For this purpose, a feature selection scheme is integrated with the classical supervised classifiers like Support Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes, separately to improve the classification performance, named as Integrated Classifiers. Here feature selection scheme generates bootstrap samples that are used to create diverse and informative features using Principal Component Analysis. Thereafter, such features are multiplied with the original data in order create training and testing data for the classifiers. Final classification results are obtained on test data by computing posterior probability. The performance of the proposed integrated classifiers with respect to their conventional classifiers is demonstrated on 12 microarray datasets. The results show that the integrated classifiers boost the performance up to 25.90% for a dataset, while the average performance gain is 9.74%, over the conventional classifiers. The superiority of the results has also been established through statistical significance test. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-01T00:00:00Z 2018-03-14T12:30:43Z 2018-03-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/22982 http://hdl.handle.net/10174/22982 https://doi.org/10.1007/978-981-10-6430-2_3 |
url |
http://hdl.handle.net/10174/22982 https://doi.org/10.1007/978-981-10-6430-2_3 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
Bhowmick S.S., Saha I., Rato L., Bhattacharjee D. (2017) Integrated Classifier: A Tool for Microarray Analysis. In: Mandal J., Dutta P., Mukhopadhyay S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer. https://link.springer.com/chapter/10.1007/978-981-10-6430-2_3 nd nd nd nd 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1822239449389465600 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-981-10-6430-2_3 |